Modified RESALI version
This commit is contained in:
BIN
RProject/.RData
BIN
RProject/.RData
Binary file not shown.
@ -1,84 +1,3 @@
|
||||
resp <- df[,c(dif.items.list)]
|
||||
}
|
||||
}
|
||||
else {
|
||||
resp <- df[,c(nodif.items.list)]
|
||||
}
|
||||
print(grp)
|
||||
tam1 <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = model,est.variance = T,verbose=F)
|
||||
}
|
||||
}
|
||||
return(summary(tam1))
|
||||
}
|
||||
rosali(dat=dat,items=1:7,group="TT")
|
||||
rosali <- function(dat=NULL,items=NULL,group=NULL) {
|
||||
nbitems <- length(items)
|
||||
items2 <- items
|
||||
# Un seul groupe
|
||||
if (length(group)!=1) {
|
||||
stop('Only one variable can be used for the group option')
|
||||
}
|
||||
# Recoder groupe en 0/1
|
||||
dat[,group] <- as.factor(dat[,group])
|
||||
if (!(all(names(levels(dat[,group]))==c("0","1")))) {
|
||||
levels(dat[,group]) <- c("0","1")
|
||||
}
|
||||
dat[,group] <- as.numeric(dat[,group])
|
||||
model_a <- pcm(df=dat,items=items,group = group,dif.items = items)
|
||||
model_b <- pcm(df=dat,items=items,group = group,dif.items = NULL)
|
||||
return(c(model_a,model_b))
|
||||
}
|
||||
rosali(dat=dat,items=1:7,group="TT")
|
||||
rosali <- function(dat=NULL,items=NULL,group=NULL) {
|
||||
nbitems <- length(items)
|
||||
items2 <- items
|
||||
# Un seul groupe
|
||||
if (length(group)!=1) {
|
||||
stop('Only one variable can be used for the group option')
|
||||
}
|
||||
# Recoder groupe en 0/1
|
||||
dat[,group] <- as.factor(dat[,group])
|
||||
if (!(all(names(levels(dat[,group]))==c("0","1")))) {
|
||||
levels(dat[,group]) <- c("0","1")
|
||||
}
|
||||
dat[,group] <- as.numeric(dat[,group])-1
|
||||
model_a <- pcm(df=dat,items=items,group = group,dif.items = items)
|
||||
model_b <- pcm(df=dat,items=items,group = group,dif.items = NULL)
|
||||
return(c(model_a,model_b))
|
||||
}
|
||||
rosali(dat=dat,items=1:7,group="TT")
|
||||
## File Name: pcm.R
|
||||
## File version: 1.0
|
||||
#' @import TAM
|
||||
#' @export
|
||||
pcm <- function(df=NULL,items=NULL,group=NULL,model="PCM2",method="MML",dif.items=NULL) {
|
||||
# Prepare analysis
|
||||
if (is.null(items)) {
|
||||
nbitems <- sum(sapply(1:100,function(x) paste0('item',x)) %in% colnames(df))
|
||||
items <- paste0('item',seq(1,nbitems))
|
||||
resp <- df[,items]
|
||||
}
|
||||
else {
|
||||
nbitems <- length(items)
|
||||
resp <- df[,paste0("item",items)]
|
||||
}
|
||||
if (is.null(group)) {
|
||||
grp <- NULL
|
||||
}
|
||||
else {
|
||||
grp <- df[,group]
|
||||
df$grp <- grp
|
||||
if (!is.null(dif.items)) {
|
||||
for (i in dif.items) {
|
||||
df[,paste0('item',i,'_noTT')] <- NA
|
||||
df[,paste0('item',i,'_TT')] <- NA
|
||||
df[df$grp==0,paste0('item',i,'_noTT')] <- df[df$grp==0,paste0('item',i)]
|
||||
df[df$grp==1,paste0('item',i,'_TT')] <- df[df$grp==1,paste0('item',i)]
|
||||
}
|
||||
}
|
||||
}
|
||||
# Analyze
|
||||
if (method=='MML') {
|
||||
if (is.null(dif.items)) {
|
||||
tam1 <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = model,est.variance = T,verbose=F)
|
||||
}
|
||||
@ -510,3 +429,84 @@ return(difit)
|
||||
rosali(dat=dat,items=1:7,group="TT")
|
||||
pcm(dat,items=1:7,group="TT",dif.items=1:2)
|
||||
summary(pcm(dat,items=1:7,group="TT",dif.items=1:2))
|
||||
library(TAM)
|
||||
resali <- function(df=NULL,items=NULL,group=NULL,verbose=T) {
|
||||
if (verbose) {
|
||||
cat('-----------------------------------------------------------\n')
|
||||
cat('COMPUTING INITIAL PCM\n')
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
nbitems <- length(items)
|
||||
nbitems_o <- nbitems
|
||||
items_n <- paste0('item',items)
|
||||
resp <- df[,items_n]
|
||||
grp <- df[,group]
|
||||
pcm_initial <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
|
||||
dat <- df
|
||||
dat$score <- rowSums(dat[,items_n])
|
||||
dat$score_q5 <- cut(dat$score,quantile(dat$score,seq(0,1,0.2)),labels=1:5,include.lowest=T)
|
||||
res.anova <- rep(NA,nbitems)
|
||||
pval <- rep(NA,nbitems)
|
||||
fval <- rep(NA,nbitems)
|
||||
for (i in items) {
|
||||
dat[,paste0('res_',i)] <- rowMeans(predict(pcm_initial)$stand.resid[,,i])
|
||||
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
|
||||
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
|
||||
fval[i] <- res.anova[[i]][1,'F value']
|
||||
}
|
||||
if (verbose) {
|
||||
cat('DONE\n')
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
res.items <- c()
|
||||
res.uniform <- c()
|
||||
k <- 1
|
||||
while(any(pval<0.05/nbitems_o)) {
|
||||
k <- k+1
|
||||
if (verbose) {
|
||||
cat(paste('COMPUTING STEP',k,'\n'))
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
res.item <- gsub("[a-z]", "",colnames(resp)[which.max(fval)])
|
||||
res.items <- c(res.items,res.item)
|
||||
res.uni <- res.anova[[which.max(fval)]][3,"Pr(>F)"]>0.05
|
||||
res.uniform <- c(res.uniform,res.uni)
|
||||
items_n <- c(items_n[items_n!=paste0('item',res.item)],paste0("item",res.item,c("noTT","TT")))
|
||||
dat[,paste0("item",res.item,'TT')] <- dat[dat$TT==1,paste0('item',res.item)]
|
||||
dat[,paste0("item",res.item,'noTT')] <- dat[dat$TT==0,paste0('item',res.item)]
|
||||
resp <- dat[,items_n]
|
||||
grp <- dat[,group]
|
||||
pcm_while <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
|
||||
nbitems <- length(items_n)
|
||||
res.anova <- rep(NA,nbitems)
|
||||
pval <- rep(NA,nbitems)
|
||||
fval <- rep(NA,nbitems)
|
||||
for (i in 1:nbitems) {
|
||||
dat[,paste0('res_',i)] <- rowMeans(predict(pcm_while)$stand.resid[,,i])
|
||||
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
|
||||
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
|
||||
fval[i] <- res.anova[[i]][1,'F value']
|
||||
}
|
||||
if (verbose) {
|
||||
cat('DONE\n')
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
}
|
||||
if (verbose) {
|
||||
cat("DETECTED DIF ITEMS\n")
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
if (length(res.items>0)) {
|
||||
results <- data.frame(dif.items=res.items,
|
||||
uniform=1*res.uniform)
|
||||
return(results)
|
||||
}
|
||||
else {
|
||||
cat("No DIF was detected")
|
||||
return(NULL)
|
||||
}
|
||||
}
|
||||
resali(df=dat,items=1:7,group="TT")
|
||||
dat$dif1
|
||||
dat$dif2
|
||||
dat$dif3
|
||||
|
78
RProject/resali.R
Normal file
78
RProject/resali.R
Normal file
@ -0,0 +1,78 @@
|
||||
library(TAM)
|
||||
|
||||
resali <- function(df=NULL,items=NULL,group=NULL,verbose=T) {
|
||||
if (verbose) {
|
||||
cat('-----------------------------------------------------------\n')
|
||||
cat('COMPUTING INITIAL PCM\n')
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
nbitems <- length(items)
|
||||
nbitems_o <- nbitems
|
||||
items_n <- paste0('item',items)
|
||||
resp <- df[,items_n]
|
||||
grp <- df[,group]
|
||||
pcm_initial <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
|
||||
dat <- df
|
||||
dat$score <- rowSums(dat[,items_n])
|
||||
dat$score_q5 <- cut(dat$score,quantile(dat$score,seq(0,1,0.2)),labels=1:5,include.lowest=T)
|
||||
res.anova <- rep(NA,nbitems)
|
||||
pval <- rep(NA,nbitems)
|
||||
fval <- rep(NA,nbitems)
|
||||
for (i in items) {
|
||||
dat[,paste0('res_',i)] <- rowMeans(predict(pcm_initial)$stand.resid[,,i])
|
||||
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
|
||||
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
|
||||
fval[i] <- res.anova[[i]][1,'F value']
|
||||
}
|
||||
if (verbose) {
|
||||
cat('DONE\n')
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
res.items <- c()
|
||||
res.uniform <- c()
|
||||
k <- 1
|
||||
while(any(pval<0.05/nbitems_o)) {
|
||||
k <- k+1
|
||||
if (verbose) {
|
||||
cat(paste('COMPUTING STEP',k,'\n'))
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
res.item <- gsub("[a-z]", "",colnames(resp)[which.max(fval)])
|
||||
res.items <- c(res.items,res.item)
|
||||
res.uni <- res.anova[[which.max(fval)]][3,"Pr(>F)"]>0.05
|
||||
res.uniform <- c(res.uniform,res.uni)
|
||||
items_n <- c(items_n[items_n!=paste0('item',res.item)],paste0("item",res.item,c("noTT","TT")))
|
||||
dat[,paste0("item",res.item,'TT')] <- dat[dat$TT==1,paste0('item',res.item)]
|
||||
dat[,paste0("item",res.item,'noTT')] <- dat[dat$TT==0,paste0('item',res.item)]
|
||||
resp <- dat[,items_n]
|
||||
grp <- dat[,group]
|
||||
pcm_while <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
|
||||
nbitems <- length(items_n)
|
||||
res.anova <- rep(NA,nbitems)
|
||||
pval <- rep(NA,nbitems)
|
||||
fval <- rep(NA,nbitems)
|
||||
for (i in 1:nbitems) {
|
||||
dat[,paste0('res_',i)] <- rowMeans(predict(pcm_while)$stand.resid[,,i])
|
||||
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
|
||||
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
|
||||
fval[i] <- res.anova[[i]][1,'F value']
|
||||
}
|
||||
if (verbose) {
|
||||
cat('DONE\n')
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
}
|
||||
if (verbose) {
|
||||
cat("DETECTED DIF ITEMS\n")
|
||||
cat('-----------------------------------------------------------\n')
|
||||
}
|
||||
if (length(res.items>0)) {
|
||||
results <- data.frame(dif.items=res.items,
|
||||
uniform=1*res.uniform)
|
||||
return(results)
|
||||
}
|
||||
else {
|
||||
cat("No DIF was detected")
|
||||
return(NULL)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user