Added IPTW function

This commit is contained in:
2025-05-26 16:14:42 +02:00
parent d071500c44
commit acb08e00c1
3 changed files with 55 additions and 0 deletions

View File

@ -1,6 +1,7 @@
# Generated by roxygen2: do not edit by hand
export(bpcm)
export(iptw)
export(pcbm)
export(pcbsm)
export(pcm)

33
R/iptw.R Normal file
View File

@ -0,0 +1,33 @@
## File Name: iptw.R
## File version: 1.0
#' Compute inverse probability of treatement weights (IPTW) for use with PCM
#'
#' This function computes IPTW weights for causal inference with the pcm function
#'
#' @param df data.frame containing the data
#' @param Y string containing the name of the column where the dependent variable is stored in df
#' @param X vector of strings containing the names of the columns where the independent variables are stored in df
#' @return A vector of IPT weights
#' @export
iptw <- function(df=NULL,Y=NULL,X=NULL) {
if (any(!(Y %in% colnames(df)))) {
stop("ERROR: provided Y variable name does not exist in df")
}
if (!("id"%in%colnames(df))) {
stop('ERROR: no column named id provided')
}
dff <- df[,c(Y,X)]
if (length(X)==1) {
formu <- paste0(Y,"~",X)
} else {
formu <- paste0(Y,"~",X[1])
for (k in 2:length(X)) {
xx <- X[k]
formu <- paste0(formu,"+",xx)
}
}
lr_out <- glm(formula = as.formula(formu),data=df,family = binomial(link = 'logit'))
psw <- df$TT/fitted(lr_out) + (1-df$TT)/(1-fitted(lr_out))
}

21
man/iptw.Rd Normal file
View File

@ -0,0 +1,21 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/iptw.R
\name{iptw}
\alias{iptw}
\title{Compute inverse probability of treatement weights (IPTW) for use with PCM}
\usage{
iptw(df = NULL, Y = NULL, X = NULL)
}
\arguments{
\item{df}{data.frame containing the data}
\item{Y}{string containing the name of the column where the dependent variable is stored in df}
\item{X}{vector of strings containing the names of the columns where the independent variables are stored in df}
}
\value{
A vector of IPT weights
}
\description{
This function computes IPTW weights for causal inference with the pcm function
}