You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

513 lines
22 KiB
R

splits_evtl[[count+1]][[item]][[variable]][(knoten+1),splits_evtl[[count+1]][[item]][[variable]][(knoten+1),]<=split] <- NA
# any split?
anysplit <- !all(is.na(unlist(splits_evtl[[count+1]])))
# passe vars_evtl an
vars_evtl[[count+1]] <- vars_evtl[[count]]
vars_evtl[[count+1]][[item]] <- rep(0,n_knots)
vars_evtl[[count+1]][[item]][c(knoten,knoten+1)] <- rep(vars_evtl[[count]][[item]][knoten],2)
vars_evtl[[count+1]][[item]][-c(knoten,knoten+1)]<- vars_evtl[[count]][[item]][-knoten]
if(length(which(!is.na(splits_evtl[[count+1]][[item]][[variable]][knoten,])))==0){
vars_evtl[[count+1]][[item]][knoten] <- vars_evtl[[count+1]][[item]][knoten]-1
}
if(length(which(!is.na(splits_evtl[[count+1]][[item]][[variable]][knoten+1,])))==0){
vars_evtl[[count+1]][[item]][knoten+1] <- vars_evtl[[count+1]][[item]][knoten+1]-1
}
# passe which_obs an
which_obs[[count+1]] <- which_obs[[count]]
which_obs[[count+1]][[item]] <- matrix(0,nrow=n_knots,ncol=npersons)
which_obs[[count+1]][[item]][c(knoten,knoten+1),] <- matrix(rep(which_obs[[count]][[item]][knoten,],2),nrow=2,byrow=T)
which_obs[[count+1]][[item]][-c(knoten,knoten+1),] <- which_obs[[count]][[item]][-knoten,]
thresh <- ordered_values[[variable]][1:n_s[variable]][split]
which_obs[[count+1]][[item]][knoten,DM_kov[,variable]>thresh] <- NA
which_obs[[count+1]][[item]][(knoten+1),DM_kov[,variable]<=thresh] <- NA
# passe numbers an
numbers[[count+1]] <- numbers[[count]]
numbers[[count+1]][[item]] <- numeric(length=n_knots)
numbers[[count+1]][[item]][c(knoten,knoten+1)] <- c(left,right)
numbers[[count+1]][[item]][-c(knoten,knoten+1)] <- numbers[[count]][[item]][-knoten]
# trace
if(trace){
cat(paste0("\n Split"," ",count,";"," ","Item"," ",item,"\n"))
}
# erhoehe counter
count <- count+1
} else{
sig <- FALSE
}
}
###################################################################################
# prettify results
mod_opt <- mod_potential[[count]]
ip_opt <- names(coef(mod_opt))[-c(1:(npersons-1))]
theta_hat <- c(coef(mod_opt)[1:(npersons-1)],0)
delta_hat <- coef(mod_opt)[npersons:length(coef(mod_opt))]
if(count>1){
dif_items <- unique(splits[,2])
nodif_items <- c(1:nitems)[-dif_items]
delta_hat_nodif <- sapply(nodif_items,function(j) delta_hat[grep(paste0("delta",j,":"),ip_opt)])
rownames(delta_hat_nodif) <- 1:nrow(delta_hat_nodif)
colnames(delta_hat_nodif) <- paste0("delta", nodif_items)
delta_hat_dif <- lapply(dif_items, function(j) delta_hat[grep(paste0("delta",j,":"),ip_opt)])
names(delta_hat_dif) <- dif_items
help9 <- cumsum(c(0,(n_levels-1)))
colnames(splits) <- c("var","item","split","level","node","number","left","right")
splits <- data.frame(cbind(splits[,1:5,drop=FALSE],"variable"=rep(NA,nrow(splits)),"threshold"=rep(NA,nrow(splits)),splits[,6:8,drop=FALSE]))
for(i in 1:nrow(splits)){
if(!is.null(colnames(DM_kov))){
splits[i,6] <- colnames(DM_kov)[splits[i,1]]
} else{
splits[i,6] <- splits[i,1]
}
v2 <- lapply(1:nvar,function(j) ordered_values[[j]][-length(ordered_values[[j]])])
splits[i,7] <- v2[[splits[i,1]]][splits[i,3]]
}
splits <- splits[,-1]
nthres <- length(unique(y))-1
for(i in dif_items){
info <- splits[splits[,"item"]==i,]
endnodes <- get_endnodes(info)
names(delta_hat_dif[[paste(i)]]) <- paste(rep(endnodes,each=nthres),rep(1:nthres,length(endnodes)),sep=":")
}
} else{
delta_hat_nodif <- sapply(1:nitems,function(j) delta_hat[grep(paste0("delta",j,":"),ip_opt)])
delta_hat_dif <- c()
}
to_return <- list("splits"=splits,
"thetas"=theta_hat,
"deltas_nodif"=delta_hat_nodif,
"deltas_dif"=delta_hat_dif,
"pvalues"=pvalues,
"devs"=devs,
"crits"=crits)
return(to_return)
}
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM")
DIFtree
View(DIFtree)
DIFtree <- function (Y, X, model = c("Rasch", "Logistic", "PCM"), type = c("udif",
"dif", "nudif"), alpha = 0.05, nperm = 1000, trace = FALSE,
penalize = FALSE, ...)
{
UseMethod("DIFtree")
}
DIFtree <- function (Y, X, model = c("Rasch", "Logistic", "PCM"), type = c("udif",
"dif", "nudif"), alpha = 0.05, nperm = 1000, trace = FALSE,
penalize = FALSE, ...)
{
browser()
UseMethod("DIFtree")
}
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM")
library(DIFtree)
dat1 <- read.csv(file = '/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N300/scenario_13A_300.csv')
dat1 <- dat1[dat1$replication==1]
dat1 <- dat1[dat1$replication==1,]
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM")
function (Y, X, model = c("Rasch", "Logistic", "PCM"), type = c("udif",
"dif", "nudif"), alpha = 0.05, nperm = 1000, trace = FALSE,
penalize = FALSE, ...)
{
UseMethod("DIFtree")
}
DIFtree <- function (Y, X, model = c("Rasch", "Logistic", "PCM"), type = c("udif",
"dif", "nudif"), alpha = 0.05, nperm = 1000, trace = FALSE,
penalize = FALSE, ...)
{
UseMethod("DIFtree")
}
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM")
library(DIFtree)
dat1 <- read.csv(file = '/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N300/scenario_13A_300.csv')
dat1 <- dat1[dat1$replication==1,]
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM")
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM",trace=T)
dat1 <- read.csv(file = '/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N300/scenario_14A_300.csv')
dat1 <- dat1[dat1$replication==1,]
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM",trace=T)
dat1$item1 <- as.factor(dat1$item1)
dat1$item2 <- as.factor(dat1$item2)
dat1$item3 <- as.factor(dat1$item3)
dat1$item4 <- as.factor(dat1$item4)
dat1$item5 <- as.factor(dat1$item5)
dat1$item6 <- as.factor(dat1$item6)
dat1$item7 <- as.factor(dat1$item7)
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM",trace=T)
data("data_sim_PCM")
data_sim_PCM
dat1 <- read.csv(file = '/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N300/scenario_14A_300.csv')
dat1 <- dat1[dat1$replication==1,]
dat1
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM",trace=T)
dat1[,c('item1','item2','item3','item4','item5','item6','item7')]
dat1[,c('item1','item2','item3','item4','item5','item6','item7')] <- dat1[,c('item1','item2','item3','item4','item5','item6','item7')]+1
dat1[,c('item1','item2','item3','item4','item5','item6','item7')]
DIFtree(Y=dat1[,c('item1','item2','item3','item4','item5','item6','item7')],X=as.data.frame(dat1[,'TT']),model="PCM",trace=T)
DIFtree(Y=dat1[,c('item1')],X=as.data.frame(dat1[,'TT']),model="PCM",trace=T)
dat1[,c('item1')]
dat1[,c('TT')]
DIFtree(Y=dat1[,c('item1')],X=as.data.frame(dat1[,'TT']),model="PCM",trace=T)
as.data.frame(dat1[,'TT'])
DIFtree(Y=data.matrix(dat1[,c('item1','item2','item3','item4','item5','item6','item7')]),X=as.matrix(dat1[,'TT']),model="PCM",trace=T)
DIFtree(Y=data.matrix(dat1[,c('item1','item2','item3','item4','item5','item6','item7')]),X=data.frame(x1=dat1[,'TT']),model="PCM",trace=T)
data.matrix(dat1[,c('item1','item2','item3','item4','item5','item6','item7')])
Y2 <- data_sim_PCM[,1]
X2 <- data_sim_PCM[,-1]
Y2
X2
DIFtree(Y=as.matrix(dat1[,c('item1','item2','item3','item4','item5','item6','item7')]),X=data.frame(x1=dat1[,'TT']),model="PCM",trace=T)
mod2 <- DIFtree(Y=Y2,X=X2,model="PCM",alpha=0.05,nperm=100,trace=TRUE)
library(DIFtree)
data(data_sim_Rasch)
data(data_sim_PCM)
Y1 <- data_sim_Rasch[,1]
X1 <- data_sim_Rasch[,-1]
Y2 <- data_sim_PCM[,1]
X2 <- data_sim_PCM[,-1]
## Not run:
mod1 <- DIFtree(Y=Y1,X=X1,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE)
mod2 <- DIFtree(Y=Y2,X=X2,model="PCM",alpha=0.05,nperm=100,trace=TRUE)
remove.packages("DIFtree")
library(devtools)
install_version("DIFtree","3.1.4")
library(DIFtree)
data(data_sim_Rasch)
data(data_sim_PCM)
Y1 <- data_sim_Rasch[,1]
X1 <- data_sim_Rasch[,-1]
Y2 <- data_sim_PCM[,1]
X2 <- data_sim_PCM[,-1]
## Not run:
mod1 <- DIFtree(Y=Y1,X=X1,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE)
mod2 <- DIFtree(Y=Y2,X=X2,model="PCM",alpha=0.05,nperm=100,trace=TRUE)
remove.packages("DIFtree")
install_version("DIFtree","2.0.1")
library(DIFtree)
data(data_sim_Rasch)
data(data_sim_PCM)
Y1 <- data_sim_Rasch[,1]
X1 <- data_sim_Rasch[,-1]
Y2 <- data_sim_PCM[,1]
X2 <- data_sim_PCM[,-1]
## Not run:
mod1 <- DIFtree(Y=Y1,X=X1,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE)
mod2 <- DIFtree(Y=Y2,X=X2,model="PCM",alpha=0.05,nperm=100,trace=TRUE)
tree_PCM <-
function(y,
DM_kov,
npersons,
nitems,
nvar,
ordered_values,
n_levels,
n_s,
alpha,
nperm,
trace
){
# design of PCM
pp_design <- diag(npersons) # persons, person P reference
pp_design <- pp_design[rep(1:nrow(pp_design),each=nitems),]
pp_design <- pp_design[,-npersons]
ip_design <- -1*diag(nitems) # item parameter
ip_design <- ip_design[rep(1:nrow(ip_design),times=npersons),]
dm_pcm <- cbind(pp_design,ip_design)
names_pcm <- c(paste("theta",1:(npersons-1),sep=""),paste("delta",1:nitems,sep=""))
colnames(dm_pcm) <- names_pcm
# functions to build design
thresholds <- lapply(1:nvar, function(j) ordered_values[[j]][-length(ordered_values[[j]])])
v <- lapply(1:nvar,function(j) 1:(n_levels[j]-1))
w <- lapply(1:nvar, function(j) rep(paste0("s",j),n_s[j]))
design_one <- function(x,threshold,upper){
if(upper){
ret <- ifelse(x > threshold,1,0)
} else{
ret <- ifelse(x > threshold,0,1)
}
return(ret)
}
design <- function(x,thresholds,upper){
ret <- sapply(thresholds, function(j) design_one(x,j,upper))
return(ret)
}
whole_design <- function(X,var,item,thresholds,upper=TRUE){
design_tree <- matrix(0,nrow=nitems*npersons,ncol=length(thresholds[[var]]))
rows <- seq(item,(nitems*npersons),by=nitems)
design_tree[rows,] <- design(X[,var],thresholds[[var]],upper)
z <- rep(paste0(ifelse(upper,"_u","_l"),item),length(thresholds[[var]]))
colnames(design_tree) <- paste0(w[[var]],v[[var]],z)
return(design_tree)
}
designlists <- function(X,thresholds,upper=TRUE){
ret <- lapply(1:nitems, function(j){
lapply(1:nvar, function(var){
whole_design(X,var,j,thresholds,upper)
})
})
return(ret)
}
#########################################################################################
mod_potential <- list()
devs <- c()
crits <- c()
splits <- c()
pvalues <- c()
ip <- list()
vars_evtl <- list()
splits_evtl <- list()
which_obs <- list()
numbers <- list()
count <- 1
numbers[[1]] <- lapply(1:nitems,function(j) 1)
which_obs[[1]] <- lapply(1:nitems,function(j) matrix(1:npersons,nrow=1))
splits_evtl[[1]] <- lapply(1:nitems,function(j) lapply(1:nvar, function(var) matrix(1:n_s[var],nrow=1)))
vars_evtl[[1]] <- lapply(1:nitems,function(j) nvar)
ip[[1]] <- lapply(1:nitems,function(j) paste0("delta",j))
### PCM ###
pp <- paste("theta",1:(npersons-1),sep="")
help_p <- paste0(pp,collapse="+")
help01 <- formula(paste("y~",help_p,"+",paste0(unlist(ip[[1]]),collapse="+"),"-1"))
help02 <- formula(paste0("FALSE~",paste0(unlist(ip[[1]]),collapse="+")))
dat0 <- data.frame(y,dm_pcm)
mod0 <- tryCatch(vglm(help01,
family=acat(parallel=help02, reverse=FALSE),
data=dat0,
na.action=na.omit,
checkwz=FALSE),
error = function(e) stop("PCM not identified!", call. =FALSE))
start <- VGAM::predict(mod0)
mod_potential[[1]] <- mod0
design_upper <- designlists(DM_kov,thresholds)
design_lower <- designlists(DM_kov,thresholds,upper=FALSE)
sig <- TRUE
anysplit <- TRUE
# function to compute all models in one knot
allmodels <- function(i,var,kn,design_lower,design_upper){
deviances <- rep(0,n_s[var])
help_kn <- ip[[count]][[i]][kn]
help1 <- paste0(unlist(ip[[count]])[-which(unlist(ip[[count]])==help_kn)],collapse="+")
splits_aktuell <- splits_evtl[[count]][[i]][[var]][kn,]
splits_aktuell <- splits_aktuell[!is.na(splits_aktuell)]
obs0 <- which(!is.na(which_obs[[count]][[i]][kn,]))
if(length(splits_aktuell)>0){
for(j in splits_aktuell){
n_lower <- sum(DM_kov[obs0,var]<=ordered_values[[var]][j])
n_upper <- sum(DM_kov[obs0,var]>ordered_values[[var]][j])
if(n_lower>=30 & n_upper>=30){
dat <- data.frame(dat0,design_lower[[i]][[var]][,j,drop=FALSE],design_upper[[i]][[var]][,j,drop=FALSE])
help2 <- paste(ip[[count]][[i]][kn],c(colnames(design_lower[[i]][[var]])[j],colnames(design_upper[[i]][[var]])[j]),sep=":")
help3 <- paste(help2,collapse="+")
help41 <- formula(paste("y~",help1,"+",help3,"-1"))
help42 <- formula(paste0("FALSE~",help1,"+",help3))
suppressWarnings(
mod <- try(vglm(help41,
family=acat(parallel=help42, reverse=FALSE),
data=dat,
checkwz=FALSE,
na.action=na.omit,
offset=start))
)
if(class(mod)!="try-error"){
deviances[j] <- deviance(mod0)-deviance(mod)
}
}
}
}
return(deviances)
}
# estimate tree
while(sig & anysplit){
# compute all models
dv <- lapply(1:nvar,function(var) {
lapply(1:nitems,function(i) {
n_knots <- length(ip[[count]][[i]])
deviances <- matrix(rep(0,n_s[var]*n_knots),ncol=n_knots)
for(kn in 1:n_knots){
deviances[,kn] <- allmodels(i,var,kn,design_lower,design_upper)
}
return(deviances)
})
})
# select optimum
variable <- which.max(lapply(1:nvar,function(j) max(unlist(dv[[j]]))))
item <- which.max(lapply(1:nitems, function(j) max(dv[[variable]][[j]])))
split <- as.numeric(which(dv[[variable]][[item]]==max(dv[[variable]][[item]]),arr.ind=TRUE)[,1])
knoten <- as.numeric(which(dv[[variable]][[item]]==max(dv[[variable]][[item]]),arr.ind=TRUE)[,2])
if(length(split)>1){
split <- split[1]
knoten <- knoten[1]
warning(paste("Maximum in iteration ",count," not uniquely defined"))
}
ip_old <- ip[[count]][[item]][knoten]
level <- length(strsplit(ip_old,":")[[1]])
number <- numbers[[count]][[item]][knoten]
left <- max(numbers[[count]][[item]])+1
right <- max(numbers[[count]][[item]])+2
# compute permutation test
dev <- rep(NA,nperm)
for(perm in 1:nperm){
dv_perm <- rep(0,n_s[variable])
obs_aktuell <- which_obs[[count]][[item]][knoten,]
obs_aktuell <- obs_aktuell[!is.na(obs_aktuell)]
DM_kov_perm <- DM_kov
DM_kov_perm[obs_aktuell,variable] <- sample(DM_kov_perm[obs_aktuell,variable],length(obs_aktuell))
design_upper_perm <- design_upper
design_upper_perm[[item]][[variable]] <- whole_design(DM_kov_perm,variable,item,thresholds)
design_lower_perm <- design_lower
design_lower_perm[[item]][[variable]] <- whole_design(DM_kov_perm,variable,item,thresholds,upper=FALSE)
dv_perm <- allmodels(item,variable,knoten,design_lower_perm,design_upper_perm)
dev[perm] <- max(dv_perm)
if(trace){
cat(".")
}
}
# test decision
crit_val <- quantile(dev,1-(alpha/vars_evtl[[count]][[item]][knoten]))
proof <- max(dv[[variable]][[item]]) > crit_val
devs[count] <- max(dv[[variable]][[item]])
crits[count] <- crit_val
pvalues[count] <- length(which(dev>max(dv[[variable]][[item]])))/nperm
if(proof){
# get new formula
help_kn2 <- ip[[count]][[item]][knoten]
help5 <- paste0(unlist(ip[[count]])[-which(unlist(ip[[count]])==help_kn2)],collapse="+")
help6 <- paste(ip[[count]][[item]][knoten],c(colnames(design_lower[[item]][[variable]])[split],colnames(design_upper[[item]][[variable]])[split]),sep=":")
help7 <- paste(help6,collapse="+")
help81 <- formula(paste("y~",help_p,"+",help5,"+",help7,"-1"))
help82 <- formula(paste0("FALSE~",help5,"+",help7))
######################
if(level>1){
help_kn4 <- lu(c(),1,level-1,c())
help_kn5 <- unlist(strsplit(help_kn2,""))
help_kn6 <- paste0(help_kn5[which(help_kn5=="_")+1],collapse="")
knoten2 <- which(help_kn4==help_kn6)
} else{
knoten2 <- knoten
}
######################
splits <- rbind(splits,c(variable,item,split,level,knoten2,number,left,right))
# fit new model
dat <- dat0 <- data.frame(dat0,design_lower[[item]][[variable]][,split,drop=FALSE],design_upper[[item]][[variable]][,split,drop=FALSE])
suppressWarnings(
mod0 <- mod_potential[[count+1]] <- tryCatch(vglm(help81,
family=acat(parallel=help82, reverse=FALSE),
data=dat,
na.action=na.omit,
checkwz=FALSE,
etastart=start),
error = function(e) stop("IFT_PCM not identified!", call. =FALSE))
)
start <- VGAM::predict(mod0)
# generiere neue itemparameter
ip[[count+1]] <- ip[[count]]
ip[[count+1]][[item]] <- rep("",length(ip[[count]][[item]])+1)
ip[[count+1]][[item]][c(knoten,knoten+1)] <- help6
ip[[count+1]][[item]][-c(knoten,knoten+1)]<- ip[[count]][[item]][-knoten]
# passe splits_evtl an
n_knots <- length(ip[[count+1]][[item]])
splits_evtl[[count+1]] <- splits_evtl[[count]]
for(var in 1:nvar){
splits_evtl[[count+1]][[item]][[var]] <- matrix(0,nrow=n_knots,ncol=n_s[var])
splits_evtl[[count+1]][[item]][[var]][c(knoten,knoten+1),] <- matrix(rep(splits_evtl[[count]][[item]][[var]][knoten,],2),nrow=2,byrow=T)
splits_evtl[[count+1]][[item]][[var]][-c(knoten,knoten+1),] <- splits_evtl[[count]][[item]][[var]][-knoten,]
}
splits_evtl[[count+1]][[item]][[variable]][knoten,splits_evtl[[count+1]][[item]][[variable]][knoten,]>=split] <- NA
splits_evtl[[count+1]][[item]][[variable]][(knoten+1),splits_evtl[[count+1]][[item]][[variable]][(knoten+1),]<=split] <- NA
# any split?
anysplit <- !all(is.na(unlist(splits_evtl[[count+1]])))
# passe vars_evtl an
vars_evtl[[count+1]] <- vars_evtl[[count]]
vars_evtl[[count+1]][[item]] <- rep(0,n_knots)
vars_evtl[[count+1]][[item]][c(knoten,knoten+1)] <- rep(vars_evtl[[count]][[item]][knoten],2)
vars_evtl[[count+1]][[item]][-c(knoten,knoten+1)]<- vars_evtl[[count]][[item]][-knoten]
if(length(which(!is.na(splits_evtl[[count+1]][[item]][[variable]][knoten,])))==0){
vars_evtl[[count+1]][[item]][knoten] <- vars_evtl[[count+1]][[item]][knoten]-1
}
if(length(which(!is.na(splits_evtl[[count+1]][[item]][[variable]][knoten+1,])))==0){
vars_evtl[[count+1]][[item]][knoten+1] <- vars_evtl[[count+1]][[item]][knoten+1]-1
}
# passe which_obs an
which_obs[[count+1]] <- which_obs[[count]]
which_obs[[count+1]][[item]] <- matrix(0,nrow=n_knots,ncol=npersons)
which_obs[[count+1]][[item]][c(knoten,knoten+1),] <- matrix(rep(which_obs[[count]][[item]][knoten,],2),nrow=2,byrow=T)
which_obs[[count+1]][[item]][-c(knoten,knoten+1),] <- which_obs[[count]][[item]][-knoten,]
thresh <- ordered_values[[variable]][1:n_s[variable]][split]
which_obs[[count+1]][[item]][knoten,DM_kov[,variable]>thresh] <- NA
which_obs[[count+1]][[item]][(knoten+1),DM_kov[,variable]<=thresh] <- NA
# passe numbers an
numbers[[count+1]] <- numbers[[count]]
numbers[[count+1]][[item]] <- numeric(length=n_knots)
numbers[[count+1]][[item]][c(knoten,knoten+1)] <- c(left,right)
numbers[[count+1]][[item]][-c(knoten,knoten+1)] <- numbers[[count]][[item]][-knoten]
# trace
if(trace){
cat(paste0("\n Split"," ",count,";"," ","Item"," ",item,"\n"))
}
# erhoehe counter
count <- count+1
} else{
sig <- FALSE
}
}
###################################################################################
# prettify results
mod_opt <- mod_potential[[count]]
ip_opt <- names(coef(mod_opt))[-c(1:(npersons-1))]
theta_hat <- c(coef(mod_opt)[1:(npersons-1)],0)
delta_hat <- coef(mod_opt)[npersons:length(coef(mod_opt))]
if(count>1){
dif_items <- unique(splits[,2])
nodif_items <- c(1:nitems)[-dif_items]
delta_hat_nodif <- sapply(nodif_items,function(j) delta_hat[grep(paste0("delta",j,":"),ip_opt)])
rownames(delta_hat_nodif) <- 1:nrow(delta_hat_nodif)
colnames(delta_hat_nodif) <- paste0("delta", nodif_items)
delta_hat_dif <- lapply(dif_items, function(j) delta_hat[grep(paste0("delta",j,":"),ip_opt)])
names(delta_hat_dif) <- dif_items
help9 <- cumsum(c(0,(n_levels-1)))
colnames(splits) <- c("var","item","split","level","node","number","left","right")
splits <- data.frame(cbind(splits[,1:5,drop=FALSE],"variable"=rep(NA,nrow(splits)),"threshold"=rep(NA,nrow(splits)),splits[,6:8,drop=FALSE]))
for(i in 1:nrow(splits)){
if(!is.null(colnames(DM_kov))){
splits[i,6] <- colnames(DM_kov)[splits[i,1]]
} else{
splits[i,6] <- splits[i,1]
}
v2 <- lapply(1:nvar,function(j) ordered_values[[j]][-length(ordered_values[[j]])])
splits[i,7] <- v2[[splits[i,1]]][splits[i,3]]
}
splits <- splits[,-1]
nthres <- length(unique(y))-1
for(i in dif_items){
info <- splits[splits[,"item"]==i,]
endnodes <- get_endnodes(info)
names(delta_hat_dif[[paste(i)]]) <- paste(rep(endnodes,each=nthres),rep(1:nthres,length(endnodes)),sep=":")
}
} else{
delta_hat_nodif <- sapply(1:nitems,function(j) delta_hat[grep(paste0("delta",j,":"),ip_opt)])
delta_hat_dif <- c()
}
to_return <- list("splits"=splits,
"thetas"=theta_hat,
"deltas_nodif"=delta_hat_nodif,
"deltas_dif"=delta_hat_dif,
"pvalues"=pvalues,
"devs"=devs,
"crits"=crits)
return(to_return)
}
library(VGAM)
mod2 <- DIFtree(Y=Y2,X=X2,model="PCM",alpha=0.05,nperm=100,trace=TRUE)
colnames(res.dat.dif)
max(res.dat[res.dat$scenario.type=="A",]$h0.rejected.p)
max(1-res.dat[res.dat$scenario.type!="A",]$beta.same.sign.truebeta.signif.p)
max(res.dat[res.dat$scenario.type!="A",]$beta.same.sign.truebeta.signif.p)
res.dat[res.dat$scenario.type!="A",]$beta.same.sign.truebeta.signif.p
View(res.dat)
res.dat[res.dat$beta.same.sign.truebeta.p==NaN & res.dat$eff.size!=0,]
res.dat[res.dat$beta.same.sign.truebeta.p==NaN & res.dat$eff.size!=0,]$N
res.dat[is.nan(res.dat$beta.same.sign.truebeta.p) & res.dat$eff.size!=0,]$N
res.dat[res.dat$N==50,]
res.dat[res.dat$N==50,]$eff.size
max(res.dat[res.dat$scenario.type!="A" & res.dat$N!=50,]$beta.same.sign.truebeta.signif.p)
max(1-res.dat[res.dat$scenario.type!="A" & res.dat$N!=50,]$beta.same.sign.truebeta.signif.p)
max(1-res.dat[res.dat$scenario.type!="A" & res.dat$N!=50,]$beta.same.sign.truebeta.p)