/********************************************************************************/
/* v1.1 : Bug fixed regarding the estimation of the latent trait standard error */
/* v2 : Bugs with temporary names fixed, New options have been added,           */
/*      modifications of the output                                             */
/********************************************************************************/

program define pcmodel, eclass
version 11.0
syntax [varlist] [if] [in] [, CATegorical(string) CONTinuous(string) DIFficulties(string) ITerate(string)  ADapt RObust From(string) RSM ESTimateonly nip(string) TRace Level(string)]

preserve
tempfile bddinip
qui save `bddinip',replace
local Cond=0

if "`level'"==""{
	local level=c(level)
}


if replay() {
	capture local cmdavant=e(cmd)
	if _rc!=0 | "`cmdavant'"!="pcmodel"{
		noi di in red "pcmodel was not the last command"
		error 100
	}
	if "`categorical'`continuous'`difficulties'`iterate'`adapt'`robust'`from'`rsm'`estimateonly'`nip'"==""{
		local rsm=e(rsm)
		local LLfull=e(ll)
		local estimateonly=e(estimateonly)
		local R2Nag=e(r2)
		local Nbid=e(N)
		local nbit=e(Nit)
		local categorical=e(categorical)
		local continuous=e(continuous)
		if "`continuous'"=="."{
			local continuous=""
		}
		if "`categorical'"=="."{
			local categorical=""
		}
		local nbcov: word count `categorical'
		local nbcovquant: word count `continuous'
		local varlist=e(items)
		tokenize `varlist' `categorical' `continuous'
		local difficulties=e(difficulties)
		local contrR=e(constr)
		tempname eB eV VarExpSS
		matrix `eB'=e(b)
		matrix `eV'=e(V)
		matrix `VarExpSS'=e(VarExpSS)
		local nbc=colsof(`eB')
		local nbdifftotbis=e(ndtb)
		if `nbcov'!=0{
			forvalues i=`=`nbit'+1'/`=`nbit'+`nbcov''{
				local ``i''_m=e(``i'')
				local k=1
				local nbModCov`=`i'-`nbit''=wordcount("```i''_m'")
				foreach m in ```i''_m'{
					local ident`=`i'-`nbit''_`k'=`m'
					local k=`k'+1
				}
			}
		}
		if "`rsm'"!="."{
			di in gr "Model : " in ye "Rating Scale Model"
		}
		else{
			di in gr "Model : " in ye "Partial Credit Model"
		}
		di in gr ""
		di in gr "                log likelihood: " in ye %-18.3f `LLfull'
		if "`estimateonly'"=="."{
			di in gr "                Marginal McFadden's pseudo R2: " in ye %-4.1f `=`R2Nag'*100' "%"
		}
		di in gr "                Number of individuals: "in ye "`Nbid'"
		di in gr "                Number of items: "in ye "`nbit'"
		if `=`nbcov'+`nbcovquant''!=0{
			di in gr "                Number of covariates: "in ye "`=`nbcov'+`nbcovquant''"
		}
		di in gr ""
		di ""
		di in gr "Parameters of the Latent trait distribution:"
		di ""
		if "`difficulties'"=="."{
			di in gr "                Identifiability constraint: `contrR'set to 0"
		}
		di in gr "		  Variance of the Latent trait: Sigma²=" in ye %-8.3f (`=`=`eB'[1,`nbc']'')^2 in gr " (SE:"in ye %-8.3f `= sqrt((2*`=`eB'[1,`nbc']')^2 *`=`eV'[`nbc',`nbc']'	)' in gr ")"
		local varTheta=(`=`=`eB'[1,`nbc']'')^2
		local Varvartheta=(2*`=`eB'[1,`nbc']')^2 *`=`eV'[`nbc',`nbc']'
		di ""
		if `nbcov'+`nbcovquant'!=0{
			di in gr "Latent trait group effect:"
			di ""
			di in gr "{hline 66}"
			di _col(20) in gr "Coef." _col(30) in gr "S.E." _col(41) in gr "z" _col(45) in gr "P>|z|" _col(57) in gr "[`level'% C.I.]"
			di in gr "{hline 66}"
			local compteur=1
			if "`difficulties'"=="."{
				local compteur=`nbdifftotbis'
			}
			if `nbcov'!=0{
				forvalues i=`=`nbit'+1'/`=`nbit'+`nbcov''{
					local compteur=`compteur'+1
					noi{
						di _col(1) in gr "``i'':" 
							di _col(4) in gr "`=abbrev("``i''",10)':" in ye " `ident`=`i'-`nbit''_1'" _col(24) in ye  "0" _col(33) in ye "." _col(41) in ye "." _col(49) in ye "." _col(57) in ye "." _col(66) in ye "."
					}
					forvalues k=2/`nbModCov`=`i'-`nbit'''{
						local compteur=`compteur'+1
						local estimate_e=`eB'[1,`compteur']
						local se_e=sqrt(`=`eV'[`compteur',`compteur']')
						noi{
							di _col(4) in gr "`=abbrev("``i''",10)':" in ye " `ident`=`i'-`nbit''_`k''" _col(19) in ye %6.3f `estimate_e' _col(28) in ye %6.3f `se_e' _col(37) in ye %5.2f `=`estimate_e'/`se_e'' _col(44) in ye %6.3f `=2*(1-normal(abs(`estimate_e'/`se_e')))'  _col(52) in ye %6.3f `=`estimate_e'-`=(1+`level'/100)/2'*`se_e'' _col(61) in ye %6.3f `=`estimate_e'+`=(1+`level'/100)/2'*`se_e''
						}
					}
					di in gr "{hline 66}"
				}
			}
			if `nbcovquant'!=0{
				forvalues i=`=`nbit'+`nbcov'+1'/`=`nbit'+`nbcov'+`nbcovquant''{
					local compteur=`compteur'+1
						local estimate_e=`eB'[1,`compteur']
						local se_e=sqrt(`=`eV'[`compteur',`compteur']')
					noi{		
						di _col(1) in gr "``i'':" _col(19) in ye %6.3f `estimate_e' _col(28) in ye %6.3f `se_e' _col(37) in ye %5.2f `=`estimate_e'/`se_e'' _col(44) in ye %6.3f `=2*(1-normal(abs(`estimate_e'/`se_e')))'  _col(52) in ye %6.3f `=`estimate_e'-`=(1+`level'/100)/2'*`se_e'' _col(61) in ye %6.3f `=`estimate_e'+`=(1+`level'/100)/2'*`se_e'' 
					}
					di in gr "{hline 66}"
				}
			}
			if "`difficulties'"!="."{
				di _col(1) in gr "_Cons" _col(19) in ye %6.3f `=`eB'[1,1]' _col(28) in ye %6.3f `=sqrt(`eV'[1,1])' _col(37) in ye %5.2f `=`=`eB'[1,1]'/`=sqrt(`eV'[1,1])'' _col(44) in ye %6.3f `=2*(1-normal(abs(`=`eB'[1,1]'/`=sqrt(`eV'[1,1])')))'  _col(52) in ye %6.3f `=`=`eB'[1,1]'-`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1])'' _col(61) in ye %6.3f `=`=`eB'[1,1]'+`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1])''
				di in gr "{hline 66}"
			}
			if "`estimateonly'"=="."{
				di ""
				di "Proportion of latent trait variance explained by covariates"
				di ""
				di in gr "{hline 53}"
				di _col(23) in gr "SS.III" _col(34) in gr "df" _col(38) in gr "V.exp." _col(47) in gr "R2.exp."
				di in gr "{hline 53}"
				local compteur=1
				if "`difficulties'"=="."{
					local compteur=`nbdifftotbis'
				}
				local compte=1
				if `nbcov'!=0{
					forvalues i=`=`nbit'+1'/`=`nbit'+`nbcov''{
						local ss3=`VarExpSS'[`compte',1]
						local df=`VarExpSS'[`compte',2]
						local vexp=`VarExpSS'[`compte',3]
						local r2exp=`VarExpSS'[`compte',4]
						local compteur=`compteur'+1
						local compte=`compte'+1
						noi di _col(1) in gr "``i'':"  _col(22) in ye %6.3f `ss3'	 _col(34) in ye %2.0f  `df'  _col(37) in ye %6.1f `vexp' "%"    _col(46) in ye %6.1f  `r2exp' "%"
					}
				}
				if `nbcovquant'!=0{
					forvalues i=`=`nbit'+`nbcov'+1'/`=`nbit'+`nbcov'+`nbcovquant''{
						local ss3=`VarExpSS'[`compte',1]
						local df=`VarExpSS'[`compte',2]
						local vexp=`VarExpSS'[`compte',3]
						local r2exp=`VarExpSS'[`compte',4]
						local compteur=`compteur'+1
						local compte=`compte'+1
						noi di _col(1) in gr "``i'':" _col(22) in ye %6.3f `ss3'	 _col(34) in ye %2.0f  `df'  _col(37) in ye %6.1f `vexp' "%"    _col(46) in ye %6.1f  `r2exp' "%"
					}
				}
				di in gr "{hline 53}"
				local sssc=`VarExpSS'[`=`compte'',1]
				local dfsc=`VarExpSS'[`=`compte'',2]
				local ssac=`VarExpSS'[`=`compte'+1',1]
				local dfac=`VarExpSS'[`=`compte'+1',2]
				di _col(23) in gr "SS.res" _col(34) in gr "df"
				di _col(1) in gr "Model without cov." _col(22) in ye %6.3f `sssc'  _col(31) in ye %5.0f `dfsc'
				di _col(1) in gr "Full model" _col(22) in ye %6.3f `ssac'  _col(31) in ye %5.0f `dfac'
				di in gr "{hline 53}"
				di ""
			}
		}
		else if "`difficulties'"!="."{
			di in gr "Latent trait distribution"
			di in gr "{hline 80}"
			di _col(18) in gr "Coef." _col(31) in gr "S.E." _col(43) in gr "z" _col(52) in gr "P>|z|" _col(61) in gr "[`level'% Conf. Interval]"
			di in gr "{hline 80}"
			di _col(1) in gr "Mu" _col(15) in ye %8.5f `=`eB'[1,1]' _col(27) in ye %8.5f `=sqrt(`eV'[1,1]) ' _col(39) in ye %5.2f `=`=`eB'[1,1]'/`=sqrt(`eV'[1,1]) '' _col(51) in ye %6.3f `=2*(1-normal(abs(`=`eB'[1,1]'/`=sqrt(`eV'[1,1]) ')))'  _col(61) in ye %8.5f `=`=`eB'[1,1]'-`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1]) '' _col(73) in ye %8.5f `=`=`eB'[1,1]'+`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1]) ''

			di _col(1) in gr "Sigma" _col(15) in ye %8.5f `=abs(`eB'[1,`nbc'])' _col(27) in ye %8.5f `=sqrt(`=`eV'[`nbc',`nbc']')' _col(39) in ye %5.2f `=`eB'[1,`nbc']/sqrt(`=`eV'[`nbc',`nbc']')' _col(51) in ye %6.3f `=2*(1-normal(abs(`eB'[1,`nbc']/sqrt(`=`eV'[`nbc',`nbc']'))))'  _col(61) in ye %8.5f `=`eB'[1,`nbc']-`=(1+`level'/100)/2'*sqrt(`=`eV'[`nbc',`nbc']')' _col(73) in ye %8.5f `=`eB'[1,`nbc']+`=(1+`level'/100)/2'*sqrt(`=`eV'[`nbc',`nbc']')'
			di in gr "{hline 80}"
			di ""
		}
		if "`difficulties'"=="."{
			di in gr "Items difficulty parameters:"
			di ""
			di in gr "{hline 52}"
			di _col(1) in gr "Item"  _col(21) in gr "Coef." _col(31) in gr "S.E."   _col(43) in gr "[`level'% C.I.]" _col(66) 
			di in gr "{hline 52}"
			local compteur=1
			if "`rsm'"=="."{
				forvalues i=1/`nbit'{
		
				tempname rep__`i'
				qui tab ``i'', matrow(`rep__`i'')
						local moda`i'=`=r(r)'
					di _col(1) in gr "``i'':" 
					forvalues g=1/`=`moda`i''-1'{
						di _col(4) in gr "response: " in ye %-6.2g `=`rep__`i''[`=`g'+1',1]' _col(20) in ye %6.3f `=`eB'[1,`compteur']' _col(29) in ye %6.3f `=sqrt(`=`eV'[`compteur',`compteur']')'   _col(38) in ye %6.3f `=`eB'[1,`compteur']-`=(1+`level'/100)/2'*sqrt(`=`eV'[`compteur',`compteur']')' _col(47) in ye %6.3f `=`eB'[1,`compteur']+`=(1+`level'/100)/2'*sqrt(`=`eV'[`compteur',`compteur']')' 
						local compteur=`compteur'+1
					}
					di in gr "{hline 52}"
				}
				di ""
			}
			else{
			tempname tau
			matrix `tau'=e(Tau)
				forvalues i=1/`nbit'{
				tempname rep__`i'
				qui tab ``i'', matrow(`rep__`i'')
						local moda`i'=`=r(r)'
					di _col(1) in gr "``i'':"   _col(20) in ye %6.3f `=`eB'[1,`compteur']' _col(29) in ye %6.3f `=sqrt(`=`eV'[`compteur',`compteur']')'   _col(38) in ye %6.3f `=`eB'[1,`compteur']-`=(1+`level'/100)/2'*sqrt(`=`eV'[`compteur',`compteur']')' _col(47) in ye %6.3f `=`eB'[1,`compteur']+`=(1+`level'/100)/2'*sqrt(`=`eV'[`compteur',`compteur']')' 
					local compteur=`compteur'+`=`moda1'-1'
				}
				di in gr "{hline 52}"
				forvalues i=2/`=`moda1'-1'{
					di _col(1) in gr "tau`=`i'-1':"  _col(20) in ye %6.3f `=`tau'[1,`i']' _col(29) in ye %6.3f `=`tau'[2,`i']'   _col(38) in ye %6.3f `=`=`tau'[1,`i']'-`=(1+`level'/100)/2'*`=`tau'[2,`i']'' _col(47) in ye %6.3f `=`=`tau'[1,`i']'+`=(1+`level'/100)/2'*`=`tau'[2,`i']'' 
				}
				di in gr "{hline 52}"
			}
		}
		else{
			di in gr "Items difficulty parameters: fixed for the analysis"
		}
	}
	else{
		local Cond=1
		local varlist=e(items)
		if "`categorical'"=="" & "`=e(categorical)'"!="."{
			local categorical=e(categorical)
		}
		if "`continuous'"=="" & "`=e(continuous)'"!="."{
			local continuous=e(continuous)
		}
		if "`difficulties'"=="" & "`=e(difficulties)'"!="."{
			local difficulties=e(difficulties)
		}
		if "`iterate'"=="" & "`=e(iterate)'"!="."{
			local iterate=e(iterate)
		}
		if "`adapt'"=="" & "`=e(adapt)'"!="."{
			local adapt=e(adapt)
		}
		if "`robust'"=="" & "`=e(robust)'"!="."{
			local robust=e(robust)
		}
		if "`from'"=="" & "`=e(from)'"!="."{
			local from=e(from)
		}
		if "`rsm'"=="" & "`=e(rsm)'"!="."{
			local rsm=e(rsm)
		}
		if "`estimateonly'"=="" & "`=e(estimateonly)'"!="."{
			local estimateonly=e(estimateonly)
		}
	}
}
else{
	local Cond=1
}
if `Cond'==1{
	tokenize `varlist' `categorical' `continuous'
	local nbit: word count `varlist'
	local nbcov: word count `categorical'
	local nbcovquant: word count `continuous'
	local nbit2:word count `difficulties'
	local NIP ""
	if "`nip'"!=""{
		local NIP "nip(`nip')"
	}
	tempname nom val
	if `nbit2'==0{
		local itest=1
	}
	else{
		local itest=0
	}
	if "`from'"!=""{
		local verifFrom=colsof(`from')
	}
	tempfile bddini bddinib
	qui{
		marksample touse,novarlist
		keep if `touse'
		local ordre=0
		forvalues i=1/`nbit'{
			tempname rep__`i'
			tab ``i'', matrow(`rep__`i'')
			local ordre=`ordre'+`=rowsof(`rep__`i'')'-1
			forvalues j=1/`=rowsof(`rep__`i'')'{
				replace ``i''=`j'-1 if ``i''==`rep__`i''[`j',1]
			}
		}
		save `bddinib',replace
		q memory
	}
	local matsizeini=r(matsize)
	if "`rsm'"!=""{
		local nbtotmodait=rowsof(`rep__1')
		forvalues i=2/`nbit'{
			if `=rowsof(`rep__`i'')'!=`nbtotmodait'{
				noi di in red "The number of item response categories must be equal for each item when using Rating Scale models"
				use `bddinip',replace 
				error 100
			}
		}
		if "`difficulties'"!=""{
			noi di in red "RSM option only available for unknow difficulties"
			use `bddinip',replace 
			error 100
		}
	}
	if "`from'"!=""{
		if "`difficulties'"!=""{
			noi di in red "From option only available for unknow difficulties"
			use `bddinip',replace 
			error 100
		}
		if "`rsm'"!=""{
			noi di in red "From option only available for the Partial Credit model"
			use `bddinip',replace 
			error 100
		}
	}

	  /*************************************/
	 /*		   Verifications			  */
	/*************************************/

	if "`iterate'"==""{
		local it=""
	}
	else{
		local iterateII="it(`iterate')"
	}
	tempvar one id item reponse obs wt x choix it covariable covverytemp
	qui save `bddinib', replace
	if "`difficulties'"!=""{
		if `nbit2'!=`nbit'{
			noi di in red "Not the same number of difficulty vectors and of items"
			use `bddinip',replace 
			error 100
		}
		forvalues i=1/`nbit'{
			if strpos("`varlist'",word("`difficulties'",`i'))==0{
				noi di in red "The item difficulty vectors must have the same names than the item variables"
				use `bddinip',replace 
				error 100
			}
		}
	}
	  /*************************************/
	 /*	Estimation of the parameters	  */
	/*************************************/
	local nbtotmodacov=0
	if `nbcov'!=0{
		forvalues i=1/`nbcov'{
			qui tab ``=`nbit'+`i''', matrow(`nom') matcell(`val')
			local nbModCov`i'=r(r)
			forvalues k=1/`nbModCov`i''{
				local valmod`k'cov`i'=`nom'[`k',1]
				local nbmod`k'cov`i'=`val'[`k',1]
			}
			local nbtotmodacov=`nbtotmodacov'+`nbModCov`i''
			if `nbModCov`i''>15{
				noi di in ye "Are you sure that ``=`nbit'+`i''' is a categorical variable? (``=`nbit'+`i''' has `nbModCov`i'' categories)"
				noi di in gr ""
			}
			local tot`i'=r(N)
			forvalues k=1/`nbModCov`i''{
				local sum=0
				forvalues k2=1/`nbModCov`i''{
					if `k2'!=`k'{
						local sum=`sum'+`val'[`k2',1]
					}
				}
				local a`i'_`k'=round((`sum'-`tot`i'')/`tot`i'',0.01)
				local b`i'_`k'=round((`sum')/`tot`i'',0.01)
			}
		}
	}
	local nbparcov=`nbtotmodacov'+`nbcovquant'
	qui{
		keep `varlist' `categorical' `continuous'
		local nbdifftotbis=0
		local nbdifftot=0
		if "`difficulties'"=="" & "`rsm'"==""{
			forvalues i=1/`nbit'{
				gen `reponse'`i' = ``i''
				drop ``i''
				tab `reponse'`i'
				local moda`i'=`=r(r)'
				local nbdifftot=`nbdifftot'+`moda`i''-1
				local nbdifftotbis=`nbdifftotbis'+`moda`i''-1
			}
		}
		else if "`difficulties'"=="" & "`rsm'"!=""{
			forvalues i=1/`nbit'{
				gen `reponse'`i' = ``i''
				drop ``i''
				tab `reponse'`i'
				local moda`i'=`=r(r)'
				local nbdifftot=`nbdifftot'+1
				local nbdifftotbis=`nbdifftotbis'+`moda`i''-1
			}
			local nbdifftot=`nbdifftot'+`nbtotmodait'-2
		}
		else{
			forvalues i=1/`nbit'{
				gen `reponse'`i' = ``i''
				drop ``i''
				local moda`i'=colsof(``i'')+1
			}
		}
		if "`from'"!=""{
			if `nbcov'!=0{
				if `verifFrom'!=`nbtotmodacov'-`nbcov'+1+`nbdifftot'+`nbcovquant'{
					noi di in red "Mismatch between the number of parameters to estimate and the number of provided parameters"
					use `bddinip',replace 
					error 100
				}
			}
			else{
				if `verifFrom'!=1+`nbdifftot'+`nbcovquant'{
					noi di in red "Mismatch between the number of parameters to estimate and the number of provided parameters"
					use `bddinip',replace 
					error 100
				}
			}
		}
		gen `one'=1
		su `one'
		local Nbid=r(N)
		collapse (sum) `wt'2=`one', by(`reponse'1-`reponse'`nbit' `categorical' `continuous')
		gen `id'=_n
		reshape long `reponse', i(`id') j(`item')
		drop if `reponse'==.	
		ologit `reponse' [fweight=`wt'2]
		local LLL00=e(ll)
		tempname eBLLL00
		matrix `eBLLL00'=e(b)
		gen `obs'=_n
		su `wt'2
		local ddlssIII=r(sum)-1
		forvalues i=1/`nbit'{
			expand `moda`i'' if `item'==`i'
		}
		by `obs', sort: gen `x'=_n-1
		gen `choix'=`reponse'==`x'
		tab `item', gen(`it')
		forvalues i=1/`nbit'{
			forvalues g=1/`=`moda`i''-1'{
				gen d_``i''_`g'=(-1)*`it'`i'*(`x'>=`g')
			}
		}
		forvalues i=1/`nbit'{
			forvalues g=1/`=`moda`i''-1'{
				capture gen __dd_`g'=0
			}
		}
		forvalues i=1/`nbit'{
			forvalues g=1/`=`moda`i''-1'{
				replace  __dd_`g'=(-1)*`it'`i'*(`x'>=`g') if ((-1)*`it'`i'*(`x'>=`g'))<__dd_`g'
			}
		}
		if "`difficulties'"!=""{
			gen difficulties=0
			forvalues i=1/`nbit'{
				forvalues g=1/`=`moda`i''-1'{
					replace difficulties=difficulties+``i''[1,`g']*d_``i''_`g'
				}
			}
		}
		if `nbcov'!=0{
			forvalues i=1/`nbcov'{
				gen `covverytemp'=``=`nbit'+`i'''
				drop ``=`nbit'+`i'''
				rename `covverytemp' ``=`nbit'+`i'''
				tab ``=`nbit'+`i''', gen(``=`nbit'+`i'''__) matrow(`nom')
				local nbModCov`i'=r(r)
				forvalues k=1/`nbModCov`i''{
					gen ``=`nbit'+`i'''__`k'_old=``=`nbit'+`i'''__`k'
					order ``=`nbit'+`i'''__`k'_old, first
					replace ``=`nbit'+`i'''__`k'=``=`nbit'+`i'''__`k'*`x'
					local ident`i'_`k'=`nom'[`k',1]
					if `k'==1 & `i'==1{
						local ident1=`ident`i'_`k''
					}
					rename ``=`nbit'+`i'''__`k' ``=`nbit'+`i'''_`ident`i'_`k''
				}
			}
			forvalues i=1/`nbcov'{
				drop ``=`nbit'+`i'''
			}
		}
		if `nbcovquant'!=0{
			forvalues i=1/`nbcovquant'{
				gen `covverytemp'=``=`nbit'+`nbcov'+`i'''*`x'
				rename ``=`nbit'+`nbcov'+`i''' ``=`nbit'+`nbcov'+`i'''_old
				rename `covverytemp' ``=`nbit'+`nbcov'+`i'''
			}
		}
		rename `id' theta
		rename `x' estimates
	}
	eq slope:estimates
	gen obs=`obs'
	gen choix=`choix'
	gen wt=`wt'
	local contrainte ""
	local contrainteit ""
	if "`rsm'"!="" & "`difficulties'"==""{
		forvalues i=2/`nbit'{
			forvalues j=2/`=`nbtotmodait'-1'{
				constraint free
				local con=r(free)
				local contrainteit "`contrainteit' `con'"
				constraint `con' d_`1'_`j'-d_`1'_1=d_``i''_`j'-d_``i''_1
			}
		}
	}
	local offset "offset(difficulties)"
	local covariablesit ""
	if "`difficulties'"==""{
		local covariablesit "d_`1'_1-d_``nbit''_`=`moda`nbit''-1'"
		local offset ""
	}
	local nbitdiffpara=0
	forvalues i=1/`nbit'{
		forvalues j=1/`=`moda`nbit''-1'{
			local nbitdiffpara=`nbitdiffpara'+1
		}
	}
	local covariables ""
	if `nbcov'!=0{
		local covariables "`covariables' ``=`nbit'+1''_`ident1'-``=`nbit'+`nbcov'''_`ident`nbcov'_`nbModCov`nbcov'''"
		forvalues i=1/`nbcov'{
			constraint free
			local con=r(free)
			local contrainte "`contrainte' `con'"
			constraint `con' ``=`nbit'+`i'''_`ident`i'_1'=0
		}
	}
	if `nbcovquant'!=0{
		local covariables "`covariables' ``=`nbit'+`nbcov'+1''-``=`nbit'+`nbcov'+`nbcovquant'''"
	}
	tempname a
	matrix `a'=(0,0)
	local skipcopy "skip"
	if "`difficulties'"==""{
		if "`from'"!=""{
			matrix `a'=`from'
			local skipcopy "copy"
		}
	}
	gen cons=estimates
	local varcons ""
	if "`difficulties'"!=""{
		local varcons "cons"
	}
	  /**********************/
	 /*Estimation du modèle*/
	/**********************/

	unab vars : `covariables' , min(0)
	local _c1= `: word count `vars''
	local _c2= `: word count `contrainte''
	gllamm estimates `varcons' `covariablesit' `covariables' , `offset' i(theta) eqs(slope) link(mlogit) expand(`obs' `choix' o) weight(`wt') `adapt' `robust' nocons `iterateII'  nodis   constraint(`contrainteit' `contrainte') from(`a') `skipcopy'  `NIP' `trace'
	local convergeance=e(converged)
	tempname eB eV
	matrix `eB'=e(b)
	local nbc=colsof(`eB')
	matrix `eV'=e(V)
	local nbpar=e(k)
	local nbN=e(N)
	local LLfull=e(ll)
	local ccnn=e(cn)
	local dfree_ModComp=`ddlssIII'-`=colsof(`eB')'+ wordcount("`contrainteit' `contrainte'")
	local SS_ModComp=(`eB'[1,`=colsof(`eB')']^2)*`dfree_ModComp'
	local dfree_ModSsCov=`dfree_ModComp'+`nbparcov'- wordcount("`contrainte'")
	local ordre=`ordre'- wordcount("`contrainteit'")+1
	if "`rsm'"!=""{
		tempname tau
		matrix `tau'=J(2,`=`moda1'-1',.)
		forvalues i=2/`=`moda1'-1'{
			qui lincom d_`1'_`i'-d_`1'_1
			local tau`i'=r(estimate)
			local setau`i'=r(se)
			matrix `tau'[1,`i']=`tau`i''
			matrix `tau'[2,`i']=`setau`i''
		}
	}

	qui{
		capture su difficulties
		if _rc==0{
			gen difficultiespost=difficulties
		}
		else{
			gen difficultiespost=0
			local indent=1
			forvalues i=1/`nbit'{
				forvalues g=1/`=`moda`i''-1'{
					replace difficultiespost=difficultiespost+`eB'[1,`indent']*d_``i''_`g'
					local indent=1+`indent'
				}
			}
		}
		/* Commande GLLAMM qui est responsable de génération de matrices résiduelles */
		qui gllamm estimates cons , offset(difficultiespost) i(theta) eqs(slope) link(mlogit) expand(`obs' `choix' o) weight(`wt') `adapt' `robust' nocons from(`eB') skip  `NIP'
		tempname eB_tot
		matrix `eB_tot'=e(b)
		local SS_ModSsCov=(`eB_tot'[1,`=colsof(`eB_tot')']^2)*`dfree_ModSsCov'
	}
	local mugauss=`eB_tot'[1,1]
	local sdgauss=abs(`eB_tot'[1,2])
	if "`estimateonly'"==""{
		noi di in gr " "
		if `nbcov'+`nbcovquant'!=0{
			noi di "McFadden's pseudo R square and type III Sums of squares computation"
		}
		else{
			noi di "McFadden's pseudo R square computation"
		}

	  /**********************************************************/
	 /* Modèle nul (juste intercept et effets aléatoires -> R2 */
	/**********************************************************/

		qui gllamm estimates __dd_*  , i(theta) eqs(slope) link(mlogit) expand(`obs' `choix' o) weight(`wt') `adapt' `robust' nocons `iterateII' from(`a') skip  `NIP'
		local LLinterSS=e(ll)
		tempname eB4
		matrix `eB4'=e(b)
		local R2Nag=1-(`LLfull'/`LLinterSS')

	  /*****************/
	 /* Calcul des SS */
	/*****************/
		qui{
			local covariables2 ""
			forvalues covs=`=`nbit'+1'/`=`nbit'+`nbcov''{
				local covariables2 "`covariables2' ``covs''_`ident`=`covs'-`nbit''_1'-``covs''_`ident`=`covs'-`nbit''_`nbModCov`=`covs'-`nbit''''"
			}
			forvalues covs=`=`nbit'+`nbcov'+1'/`=`nbit'+`nbcov'+`nbcovquant''{
				local covariables2 "`covariables2' ``covs''"
			}
			if `nbcov'+`nbcovquant'!=0{
				forvalues covs=`=`nbit'+1'/`=`nbit'+`nbcov'+`nbcovquant''{
					noi di "                for " in ye "``covs''" in gr " covariate"
					if strpos("`categorical'","``covs''")!=0 & "``covs''"!=""{
						local covsans= subinword("`covariables2'","``covs''_`ident`=`covs'-`nbit''_1'-``covs''_`ident`=`covs'-`nbit''_`nbModCov`=`covs'-`nbit''''","",.)
						local dfree_Mss``covs''=`dfree_ModComp'+ `nbModCov`=`covs'-`nbit'''-1
					}
					else{
						local covsans= subinword("`covariables2'","``covs''","",.)
						local dfree_Mss``covs''=`dfree_ModComp'+1
					}
					capture constraint drop `contrainterep' 
					local contrainterep ""
					if `nbcov'!=0{
						forvalues i=1/`nbcov'{
							if `=`nbit'+`i''!=`covs'{
								constraint free
								local con=r(free)
								local contrainterep "`contrainterep' `con'"
								constraint `con' ``=`nbit'+`i'''_`ident`i'_1'=0
							}
						}
					}
					gllamm estimates cons `covsans' , offset(difficultiespost) i(theta) eqs(slope) link(mlogit) expand(`obs' `choix' o) weight(`wt') `adapt' `robust' nocons `iterateII'   constraint(`contrainterep') from(`eB') skip  `NIP'
					tempname eB``covs''
					matrix `eB``covs'''=e(b)
					local SS_Mss``covs''=(`eB``covs'''[1,`=colsof(`eB``covs''')']^2)*`dfree_Mss``covs'''
					local LLfullmoin=e(ll)
					tempname eB4
					matrix `eB4'=e(b)
					local R2N_``covs''=1-(`LLfullmoin'/`LLinterSS')
					tempname eB2
					matrix `eB2'=e(b)
					local nbpar2=e(k)				
				}
			}
		}
		noi di in gr " "
	}
	di in gr ""
	if "`rsm'"!=""{
		di in gr "Model : " in ye "Rating Scale Model"
	}
	else{
		di in gr "Model : " in ye "Partial Credit Model"
	}
	di in gr ""
	di in gr "                log likelihood: " in ye %-18.3f `LLfull'
	local lll=e(ll)
	if "`estimateonly'"==""{
		di in gr "                Marginal McFadden's pseudo R2: " in ye %-4.1f `=`R2Nag'*100' "%"
	}
	di in gr "                Number of individuals: "in ye "`Nbid'"
	di in gr "                Number of items: "in ye "`nbit'"
	if `=`nbcov'+`nbcovquant''!=0{
		di in gr "                Number of covariates: "in ye "`=`nbcov'+`nbcovquant''"
	}
	di in gr ""
	di ""
	di in gr "Parameters of the Latent trait distribution:"
	di ""
	local contrR ""
	if "`difficulties'"==""{
		if `=`nbcov'+`nbcovquant''!=0{
			local subgroup0 ""
			if `nbcov'!=0{
				forvalues i=1/`nbcov'{
					local subgroup0 "`subgroup0'``=`nbit'+`i''' = `ident`i'_1', "
				}	
			}
			if `nbcovquant'!=0{
				forvalues i=1/`nbcovquant'{
					local subgroup0 "`subgroup0'``=`nbit'+`nbcov'+`i''' = 0, "
				}
			}
			local subgroup0b "`=reverse(subinstr(reverse("`subgroup0'"), ",", ":", 1))'"
			local contrR "latent trait for `subgroup0b'"
		}
		else{
		
			local contrR "overall latent trait mean "
		}
		di in gr "                Identifiability constraint: `contrR'set to 0"
	}
	di in gr "		  Variance of the Latent trait: Sigma²=" in ye %-8.3f (`=`=`eB'[1,`nbc']'')^2 in gr " (SE:"in ye %-8.3f `= sqrt((2*`=`eB'[1,`nbc']')^2 *`=`eV'[`nbc',`nbc']'	)' in gr ")"
	local varTheta=(`=`=`eB'[1,`nbc']'')^2
	local Varvartheta=(2*`=`eB'[1,`nbc']')^2 *`=`eV'[`nbc',`nbc']'
	di ""
	if `nbcov'+`nbcovquant'!=0{
		if "`estimateonly'"=="" & `=`nbcov'+`nbcovquant''>0 {
			tempname VarExpSS
			matrix `VarExpSS'=J(`=`nbcov'+`nbcovquant'+2',4,.)
			local compte=1
			if `nbcov'!=0{
				forvalues i=`=`nbit'+1'/`=`nbit'+`nbcov''{
					matrix `VarExpSS'[`compte',1]=`SS_Mss``i'''-`SS_ModComp'
					matrix `VarExpSS'[`compte',2]=`dfree_Mss``i'''-`dfree_ModComp'
					matrix `VarExpSS'[`compte',3]=(`SS_Mss``i'''-`SS_ModComp')/`SS_Mss``i'''*100
					matrix `VarExpSS'[`compte',4]=(`R2Nag'-`R2N_``i''')/`R2Nag'*100
					local compte=`compte'+1
				}
			}
			if `nbcovquant'!=0{
				forvalues i=`=`nbit'+`nbcov'+1'/`=`nbit'+`nbcov'+`nbcovquant''{
					matrix `VarExpSS'[`compte',1]=`SS_Mss``i'''-`SS_ModComp'
					matrix `VarExpSS'[`compte',2]=`dfree_Mss``i'''-`dfree_ModComp'
					matrix `VarExpSS'[`compte',3]=(`SS_Mss``i'''-`SS_ModComp')/`SS_Mss``i'''*100
					matrix `VarExpSS'[`compte',4]=(`R2Nag'-`R2N_``i''')/`R2Nag'*100
					local compte=`compte'+1
				}
			}
			matrix `VarExpSS'[`=`compte'',1]=`SS_ModSsCov'
			matrix `VarExpSS'[`=`compte'',2]=`dfree_ModSsCov'
			matrix `VarExpSS'[`=`compte'+1',1]=`SS_ModComp'
			matrix `VarExpSS'[`=`compte'+1',2]=`dfree_ModComp'
		}
		if c(linesize)>=101{
			di in gr "Latent trait group effect:"
			di ""
			di in gr "{hline 101}"
			di _col(20) in gr "Coef." _col(30) in gr "S.E." _col(41) in gr "z" _col(45) in gr "P>|z|" _col(57) in gr "[`level'% C.I.]" _col(73) in gr "SS.III" _col(81) in gr "df" _col(85) in gr "V.exp." _col(95) in gr "R2.exp."
			di in gr "{hline 101}"
			local compteur=1
			if "`difficulties'"==""{
				local compteur=`nbdifftotbis'
			}
			if `nbcov'!=0{
				forvalues i=`=`nbit'+1'/`=`nbit'+`nbcov''{
					local ss3=.
					local df=.
					local vexp=.
					local r2exp=.
					if "`estimateonly'"==""{
						local ss3=`SS_Mss``i'''-`SS_ModComp'
						local df=`dfree_Mss``i'''-`dfree_ModComp'
						local vexp=(`SS_Mss``i'''-`SS_ModComp')/`SS_Mss``i'''*100
						local r2exp=(`R2Nag'-`R2N_``i''')/`R2Nag'*100
					}
					local compteur=`compteur'+1
					noi{
						di _col(1) in gr "``i'':"  _col(72) in ye %6.3f `ss3'	 _col(81) in ye %2.0f  `df'  _col(84) in ye %6.1f `vexp' "%"    _col(94) in ye %6.1f  `r2exp' "%"
						di _col(4) in gr "`=abbrev("``i''",10)':" in ye " `ident`=`i'-`nbit''_1'" _col(24) in ye  "0" _col(33) in ye "." _col(41) in ye "." _col(49) in ye "." _col(57) in ye "." _col(66) in ye "."  
					}
					forvalues k=2/`nbModCov`=`i'-`nbit'''{
						local compteur=`compteur'+1
						local estimate_e=`eB'[1,`compteur']
						local se_e=sqrt(`=`eV'[`compteur',`compteur']')
						noi{
							di _col(4) in gr "`=abbrev("``i''",10)':" in ye " `ident`=`i'-`nbit''_`k''" _col(19) in ye %6.3f `estimate_e' _col(28) in ye %6.3f `se_e' _col(37) in ye %5.2f `=`estimate_e'/`se_e'' _col(44) in ye %6.3f `=2*(1-normal(abs(`estimate_e'/`se_e')))'  _col(52) in ye %6.3f `=`estimate_e'-`=(1+`level'/100)/2'*`se_e'' _col(61) in ye %6.3f `=`estimate_e'+`=(1+`level'/100)/2'*`se_e''	
						}
					}
					di in gr "{hline 101}"
				}
			}	
			if `nbcovquant'!=0{
				forvalues i=`=`nbit'+`nbcov'+1'/`=`nbit'+`nbcov'+`nbcovquant''{
					local ss3=.
					local df=.
					local vexp=.
					local r2exp=.
					if "`estimateonly'"==""{
						local ss3=`SS_Mss``i'''-`SS_ModComp'
						local df=`dfree_Mss``i'''-`dfree_ModComp'
						local vexp=(`SS_Mss``i'''-`SS_ModComp')/`SS_Mss``i'''*100
						local r2exp=(`R2Nag'-`R2N_``i''')/`R2Nag'*100
					}
					local compteur=`compteur'+1
						local estimate_e=`eB'[1,`compteur']
						local se_e=sqrt(`=`eV'[`compteur',`compteur']')
					noi{		
						di _col(1) in gr "``i'':" _col(19) in ye %6.3f `estimate_e' _col(28) in ye %6.3f `se_e' _col(37) in ye %5.2f `=`estimate_e'/`se_e'' _col(44) in ye %6.3f `=2*(1-normal(abs(`estimate_e'/`se_e')))'  _col(52) in ye %6.3f `=`estimate_e'-`=(1+`level'/100)/2'*`se_e'' _col(61) in ye %6.3f `=`estimate_e'+`=(1+`level'/100)/2'*`se_e''   _col(72) in ye %6.3f `ss3'	 _col(81) in ye %2.0f  `df'  _col(84) in ye %6.1f `vexp' "%"    _col(94) in ye %6.1f  `r2exp' "%"
					}
					di in gr "{hline 101}"
				}
			}	
			if "`difficulties'"!=""{
				di _col(1) in gr "_Cons" _col(19) in ye %6.3f `=`eB'[1,1]' _col(28) in ye %6.3f `=sqrt(`eV'[1,1])' _col(37) in ye %5.2f `=`=`eB'[1,1]'/`=sqrt(`eV'[1,1])'' _col(44) in ye %6.3f `=2*(1-normal(abs(`=`eB'[1,1]'/`=sqrt(`eV'[1,1])')))'  _col(52) in ye %6.3f `=`=`eB'[1,1]'-`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1])'' _col(61) in ye %6.3f `=`=`eB'[1,1]'+`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1])''
				di in gr "{hline 101}"
			}
			local sssc=.
			local dfsc=.
			local ssac=.
			local dfac=.
			if "`estimateonly'"==""{
				local sssc=`SS_ModSsCov'
				local dfsc=`dfree_ModSsCov'
				local ssac=`SS_ModComp'
				local dfac=`dfree_ModComp'
			}
			di _col(73) in gr "SS.res" _col(84) in gr "df"
			di _col(45) in gr "Model without covariates" _col(72) in ye %6.3f `sssc'  _col(81) in ye %5.0f `dfsc'
			di _col(59) in gr "Full model" _col(72) in ye %6.3f `ssac'  _col(81) in ye %5.0f `dfac'
			di in gr "{hline 101}"
			di ""
		}
		else{
			di in gr "Latent trait group effect:"
			di ""
			di in gr "{hline 66}"
			di _col(20) in gr "Coef." _col(30) in gr "S.E." _col(41) in gr "z" _col(45) in gr "P>|z|" _col(57) in gr "[`level'% C.I.]"
			di in gr "{hline 66}"
			local compteur=1
			if "`difficulties'"==""{
				local compteur=`nbdifftotbis'
			}
			if `nbcov'!=0{
				forvalues i=`=`nbit'+1'/`=`nbit'+`nbcov''{
					local compteur=`compteur'+1
					noi{
						di _col(1) in gr "``i'':" 
						di _col(4) in gr "`=abbrev("``i''",10)':" in ye " `ident`=`i'-`nbit''_1'" _col(24) in ye  "0" _col(33) in ye "." _col(41) in ye "." _col(49) in ye "." _col(57) in ye "." _col(66) in ye "."	
					}
					forvalues k=2/`nbModCov`=`i'-`nbit'''{
						local compteur=`compteur'+1
						local estimate_e=`eB'[1,`compteur']
						local se_e=sqrt(`=`eV'[`compteur',`compteur']')
						noi{
							di _col(4) in gr "`=abbrev("``i''",10)':" in ye " `ident`=`i'-`nbit''_`k''" _col(19) in ye %6.3f `estimate_e' _col(28) in ye %6.3f `se_e' _col(37) in ye %5.2f `=`estimate_e'/`se_e'' _col(44) in ye %6.3f `=2*(1-normal(abs(`estimate_e'/`se_e')))'  _col(52) in ye %6.3f `=`estimate_e'-`=(1+`level'/100)/2'*`se_e'' _col(61) in ye %6.3f `=`estimate_e'+`=(1+`level'/100)/2'*`se_e''	
						}
					}
					di in gr "{hline 66}"
				}
			}	
			if `nbcovquant'!=0{
				forvalues i=`=`nbit'+`nbcov'+1'/`=`nbit'+`nbcov'+`nbcovquant''{
					local compteur=`compteur'+1
						local estimate_e=`eB'[1,`compteur']
						local se_e=sqrt(`=`eV'[`compteur',`compteur']')
					noi{		
						di _col(1) in gr "``i'':" _col(19) in ye %6.3f `estimate_e' _col(28) in ye %6.3f `se_e' _col(37) in ye %5.2f `=`estimate_e'/`se_e'' _col(44) in ye %6.3f `=2*(1-normal(abs(`estimate_e'/`se_e')))'  _col(52) in ye %6.3f `=`estimate_e'-`=(1+`level'/100)/2'*`se_e'' _col(61) in ye %6.3f `=`estimate_e'+`=(1+`level'/100)/2'*`se_e'' 
					}
					di in gr "{hline 66}"
				}
			}	
			if "`difficulties'"!=""{
				di _col(1) in gr "_Cons" _col(19) in ye %6.3f `=`eB'[1,1]' _col(28) in ye %6.3f `=sqrt(`eV'[1,1])' _col(37) in ye %5.2f `=`=`eB'[1,1]'/`=sqrt(`eV'[1,1])'' _col(44) in ye %6.3f `=2*(1-normal(abs(`=`eB'[1,1]'/`=sqrt(`eV'[1,1])')))'  _col(52) in ye %6.3f `=`=`eB'[1,1]'-`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1])'' _col(61) in ye %6.3f `=`=`eB'[1,1]'+`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1])''
				di in gr "{hline 66}"
			}
			if "`estimateonly'"==""{
				di ""
				di "Proportion of latent trait variance explained by covariates"
				di ""
				di in gr "{hline 53}"
				di _col(23) in gr "SS.III" _col(34) in gr "df" _col(38) in gr "V.exp." _col(47) in gr "R2.exp."
				di in gr "{hline 53}"
				local compteur=1
				if "`difficulties'"==""{
					local compteur=`nbdifftotbis'
				}
				if `nbcov'!=0{
					forvalues i=`=`nbit'+1'/`=`nbit'+`nbcov''{
						local ss3=`SS_Mss``i'''-`SS_ModComp'
						local df=`dfree_Mss``i'''-`dfree_ModComp'
						local vexp=(`SS_Mss``i'''-`SS_ModComp')/`SS_Mss``i'''*100
						local r2exp=(`R2Nag'-`R2N_``i''')/`R2Nag'*100
						local compteur=`compteur'+1
						noi di _col(1) in gr "``i'':"  _col(22) in ye %6.3f `ss3'	 _col(34) in ye %2.0f  `df'  _col(37) in ye %6.1f `vexp' "%"    _col(46) in ye %6.1f  `r2exp' "%"
					}
				}
				if `nbcovquant'!=0{
					forvalues i=`=`nbit'+`nbcov'+1'/`=`nbit'+`nbcov'+`nbcovquant''{
						local ss3=`SS_Mss``i'''-`SS_ModComp'
						local df=`dfree_Mss``i'''-`dfree_ModComp'
						local vexp=(`SS_Mss``i'''-`SS_ModComp')/`SS_Mss``i'''*100
						local r2exp=(`R2Nag'-`R2N_``i''')/`R2Nag'*100
						local compteur=`compteur'+1
						noi di _col(1) in gr "``i'':" _col(22) in ye %6.3f `ss3'	 _col(34) in ye %2.0f  `df'  _col(37) in ye %6.1f `vexp' "%"    _col(46) in ye %6.1f  `r2exp' "%"
					}
				}
				di in gr "{hline 53}"
				local sssc=`SS_ModSsCov'
				local dfsc=`dfree_ModSsCov'
				local ssac=`SS_ModComp'
				local dfac=`dfree_ModComp'
				di _col(23) in gr "SS.res" _col(34) in gr "df"
				di _col(1) in gr "Model without cov." _col(22) in ye %6.3f `sssc'  _col(31) in ye %5.0f `dfsc'
				di _col(1) in gr "Full model" _col(22) in ye %6.3f `ssac'  _col(31) in ye %5.0f `dfac'
				di in gr "{hline 53}"
				di ""
			}
		}
	}
	else if "`difficulties'"!=""{
		di in gr "Latent trait distribution"
		di in gr "{hline 80}"
		di _col(18) in gr "Coef." _col(31) in gr "S.E." _col(43) in gr "z" _col(52) in gr "P>|z|" _col(61) in gr "[`level'% Conf. Interval]"
		di in gr "{hline 80}"
		di _col(1) in gr "Mu" _col(15) in ye %8.5f `=`eB'[1,1]' _col(27) in ye %8.5f `=sqrt(`eV'[1,1]) ' _col(39) in ye %5.2f `=`=`eB'[1,1]'/`=sqrt(`eV'[1,1]) '' _col(51) in ye %6.3f `=2*(1-normal(abs(`=`eB'[1,1]'/`=sqrt(`eV'[1,1]) ')))'  _col(61) in ye %8.5f `=`=`eB'[1,1]'-`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1]) '' _col(73) in ye %8.5f `=`=`eB'[1,1]'+`=(1+`level'/100)/2'*`=sqrt(`eV'[1,1]) ''
	
		di _col(1) in gr "Sigma" _col(15) in ye %8.5f `=abs(`eB'[1,`nbc'])' _col(27) in ye %8.5f `=sqrt(`=`eV'[`nbc',`nbc']')' _col(39) in ye %5.2f `=`eB'[1,`nbc']/sqrt(`=`eV'[`nbc',`nbc']')' _col(51) in ye %6.3f `=2*(1-normal(abs(`eB'[1,`nbc']/sqrt(`=`eV'[`nbc',`nbc']'))))'  _col(61) in ye %8.5f `=`eB'[1,`nbc']-`=(1+`level'/100)/2'*sqrt(`=`eV'[`nbc',`nbc']')' _col(73) in ye %8.5f `=`eB'[1,`nbc']+`=(1+`level'/100)/2'*sqrt(`=`eV'[`nbc',`nbc']')'
		di in gr "{hline 80}"
		di ""
	}	
	if "`difficulties'"==""{
		di in gr "Items difficulty parameters:"
		di ""
		di in gr "{hline 52}"
		di _col(1) in gr "Item"  _col(21) in gr "Coef." _col(31) in gr "S.E."   _col(43) in gr "[`level'% C.I.]" _col(66) 
		di in gr "{hline 52}"
		local compteur=1
		if "`rsm'"==""{
			forvalues i=1/`nbit'{
				di _col(1) in gr "``i'':" 
				forvalues g=1/`=`moda`i''-1'{
					di _col(4) in gr "response: " in ye %-6.2g `=`rep__`i''[`=`g'+1',1]' _col(20) in ye %6.3f `=`eB'[1,`compteur']' _col(29) in ye %6.3f `=sqrt(`=`eV'[`compteur',`compteur']')'   _col(38) in ye %6.3f `=`eB'[1,`compteur']-`=(1+`level'/100)/2'*sqrt(`=`eV'[`compteur',`compteur']')' _col(47) in ye %6.3f `=`eB'[1,`compteur']+`=(1+`level'/100)/2'*sqrt(`=`eV'[`compteur',`compteur']')' 
					local compteur=`compteur'+1
				}
				di in gr "{hline 52}"
			}
			di ""
		}
		else{
			forvalues i=1/`nbit'{
				di _col(1) in gr "``i'':"   _col(20) in ye %6.3f `=`eB'[1,`compteur']' _col(29) in ye %6.3f `=sqrt(`=`eV'[`compteur',`compteur']')'   _col(38) in ye %6.3f `=`eB'[1,`compteur']-`=(1+`level'/100)/2'*sqrt(`=`eV'[`compteur',`compteur']')' _col(47) in ye %6.3f `=`eB'[1,`compteur']+`=(1+`level'/100)/2'*sqrt(`=`eV'[`compteur',`compteur']')' 
				local compteur=`compteur'+`=`moda1'-1'
			}
			di in gr "{hline 52}"
			forvalues i=2/`=`moda1'-1'{
				di _col(1) in gr "tau`=`i'-1':"  _col(20) in ye %6.3f `tau`i'' _col(29) in ye %6.3f `setau`i''   _col(38) in ye %6.3f `=`tau`i''-`=(1+`level'/100)/2'*`setau`i''' _col(47) in ye %6.3f `=`tau`i''+`=(1+`level'/100)/2'*`setau`i''' 
			}
			di in gr "{hline 52}"
		}
	}
	else{
		di in gr "Items difficulty parameters: fixed for the analysis"
	}

	  /*************************************/
	 /*	             ereturn              */
	/*************************************/

	qui{
		if "`difficulties'"==""{
	tempname Varbeta Vardelta beta delta Vartheta theta
			matrix `Varbeta'=`eV'
			local Varsigma=`Varbeta'[`=colsof(`Varbeta')',`=colsof(`Varbeta')']
			matrix `Vardelta'=`Varbeta'[1..`nbdifftotbis',1..`nbdifftotbis']
			matrix `beta'=`eB'
			local sigma=abs(`beta'[1,`=colsof(`beta')'])
			matrix `delta'=`beta'[1,1..`nbdifftotbis']
			if `=`nbcov'+`nbcovquant''!=0{
				matrix `Vartheta'=`Varbeta'[`=`nbdifftotbis'+1'..`=colsof(`Varbeta')-1',`=`nbdifftotbis'+1'..`=colsof(`Varbeta')-1']
				matrix `theta'=`beta'[1,`=`nbdifftotbis'+1'..`=colsof(`beta')-1']
			}
			else{
				local thetas=0
				local Varthetas=0
			}
		}
		else{
			if `=`nbcov'+`nbcovquant''!=0{
				tempname Vartheta theta
				matrix `Vartheta'=`eV'
				local Varsigma=`Vartheta'[`=colsof(`Vartheta')',`=colsof(`Vartheta')']
				matrix `Vartheta'=`Vartheta'[1..`=colsof(`Vartheta')-1',1..`=colsof(`Vartheta')-1']
				matrix `theta'=`eB'
				local sigma=abs(`theta'[1,`=colsof(`theta')'])
				matrix `theta'=`theta'[1,1..`=colsof(`theta')-1']
			}
			else{
				tempname theta Vtheta
				matrix `theta'=`eB'
				local sigma=abs(`theta'[1,`=colsof(`theta')'])
				matrix `Vtheta'=`eV'
				local Varsigma=`Vtheta'[`=colsof(`Vtheta')',`=colsof(`Vtheta')']
				local thetas=`theta'[1,1]
				local varthetas=`Vtheta'[1,1]
			}
		}
		ereturn clear
		if `=`nbcov'+`nbcovquant''!=0{
			matrix b=`eB'
			matrix V=`eV'
			ereturn post b V, depname(theta)
			ereturn matrix theta=`theta'
			ereturn matrix Vartheta=`Vartheta'
		}
		else{
			if "`difficulties'"==""{
				matrix V=`eV'
				tempname thetatemp Varthetatemp
				matrix `thetatemp'=(0)
				matrix `Varthetatemp'=(0)
				matrix coleq `Varthetatemp'=estimates
				matrix coln `Varthetatemp'=mu
				matrix roweq `Varthetatemp'=estimates
				matrix rown `Varthetatemp'=mu
				matrix b=`eB'
				matrix coleq `thetatemp'=estimates
				matrix coln `thetatemp'=mu
				matrix rown `thetatemp'=y1
				ereturn post b V, depname(theta)
				ereturn matrix theta=`thetatemp'
				ereturn matrix Vartheta=`Varthetatemp'
			}
			else{
				tempname thetatemp Varthetatemp
				matrix `Varthetatemp'=(`varthetas')
				matrix coleq `Varthetatemp'=estimates
				matrix coln `Varthetatemp'=mu
				matrix roweq `Varthetatemp'=estimates
				matrix rown `Varthetatemp'=mu
				matrix `thetatemp'=(`thetas')
				matrix coleq `thetatemp'=estimates
				matrix coln `thetatemp'=mu
				matrix rown `thetatemp'=y1
				matrix V=`eV'
				matrix b=`eB'
				ereturn post b V, depname(theta)
				tempname vvvt vvvVt
				matrix `vvvt'=(`thetas')
				matrix `vvvVt'=(`varthetas')
				ereturn matrix theta=`vvvt'
				ereturn matrix Vartheta=`vvvVt'
			}
		}
		ereturn scalar ll=`LLfull'
		ereturn scalar cn=`ccnn'
		ereturn scalar r2=`R2Nag'
		ereturn scalar N=`Nbid'
		ereturn scalar Nit=`nbit'
		ereturn scalar converged=`convergeance'
		ereturn scalar ndtb=`nbdifftotbis'
		ereturn scalar mugauss=`mugauss'
		ereturn scalar sdgauss=`sdgauss'
		if "`nip'"!=""{
		ereturn scalar nip=`nip'
		}
		ereturn local items `varlist'
		ereturn local categorical `categorical'
		ereturn local continuous `continuous'
		ereturn local estimateonly `estimateonly'
		ereturn local constr `contrR'
		ereturn local difficulties `difficulties'
		if `nbcov'!=0{
			forvalues i=`=`nbit'+1'/`=`nbit'+`nbcov''{
				local ``i''_m ""
				forvalues k=1/`nbModCov`=`i'-`nbit'''{
					local ``i''_m "```i''_m' `ident`=`i'-`nbit''_`k''"
					ereturn local ``i'' ```i''_m'
				}
			}
		}
		ereturn local rsm `rsm'
		ereturn local from `from'
		ereturn local robust `robust'
		ereturn local adapt `adapt'
		ereturn local iterate `iterate'
		ereturn local itest `itest'
		ereturn local datatest `bddinib' 
		ereturn local if `if'
		ereturn local in `in'
		ereturn local cmd "pcmodel"
		ereturn scalar order=`ordre'
		if `=`nbcov'+`nbcovquant''!=0{
			ereturn scalar Ncat=`nbcov'
			ereturn scalar Ncont=`nbcovquant'
		}
		if "`difficulties'"==""{
			ereturn matrix Vardelta=`Vardelta'
			ereturn matrix delta=`delta'
			ereturn scalar sigma=`sigma'
			ereturn scalar Varsigma=`Varsigma'
			if "`rsm'"!=""{
				ereturn matrix Tau=`tau'
			}
		}
		else{ 
			if `=`nbcov'+`nbcovquant''!=0{
				ereturn scalar sigma=`sigma'
				ereturn scalar Varsigma=`Varsigma'
			}
			else{
				ereturn scalar sigma=`sigma'
				ereturn scalar Varsigma=`Varvartheta'
			}
		}
		if "`estimateonly'"=="" & `=`nbcov'+`nbcovquant''>0 {
			ereturn matrix VarExpSS `VarExpSS'
		}
	}
use `bddinip', replace
}
restore
end