stop("Models RSM and GRSM cannot be used for unequal numbers of response categories!") } design_list <- design_GPCMlasso(formula = formula, data = data, Y = Y, RSM = RSM, GPCM = GPCM, DSF = DSF, all.dummies = control$all.dummies, main.effects = main.effects) if (design_list$m == 0) { control$lambda <- 0 control$adaptive <- FALSE cv <- FALSE } if (length(control$lambda) == 1) { cv <- FALSE } loglik_fun <- loglikPCMlasso score_fun <- scorePCMlasso log_score_fun <- loglikscorePCMlasso2 if (all(k == 2)) { loglik_fun <- loglikDIFlasso score_fun <- scoreDIFlasso log_score_fun <- loglikscoreDIFlasso2 } fit <- fit_GPCMlasso(model = model, loglik_fun = loglik_fun, acoefs2 = acoefs2, score_fun = score_fun, log_score_fun, design_list = design_list, control = control, start = NULL, scale_fac = 1, main.effects = main.effects) if (is.null(control$lambda)) { control$lambda <- fit$lambda } coefficients <- fit$coefficients coef.rescal <- fit$coef.rescal logLik <- fit$logLik df <- fit$df BIC <- -2 * logLik + log(design_list$n) * df AIC <- -2 * logLik + 2 * df cAIC <- -2 * logLik + 2 * df + 2 * df * (df - 1)/(design_list$n - df - 1) if (cv) { cv_error <- fit_cv_GPCMlasso(model, design_list, control, score_fun, loglik_fun, log_score_fun, Y) } else { cv_error <- NULL } ret.list <- list(coefficients = coefficients, logLik = logLik, cv_error = cv_error, call = match.call(), model = model, data = data, control = control, DSF = DSF, formula = formula, item.names = item.names, Y = Y, design_list = design_list, AIC = AIC, BIC = BIC, cAIC = cAIC, df = df, coef.rescal = coef.rescal, main.effects = main.effects) class(ret.list) <- "GPCMlasso" return(ret.list) } GPCMlasso2 <- function (formula, data, DSF = FALSE, model = c("PCM", "RSM", "GPCM", "GRSM", "RM", "2PL"), control = ctrl_GPCMlasso(), cv = FALSE, main.effects = TRUE,acoefs2=NULL) { if (!is.data.frame(data)) stop("data has to be a data.frame!") Y <- model.response(model.frame(formula, data = data)) for (i in 1:ncol(Y)) { Y[, i] <- as.factor(Y[, i]) } item.names <- colnames(Y) model <- match.arg(model) RSM <- GPCM <- FALSE if (model %in% c("GRSM", "RSM")) { RSM <- TRUE } if (model %in% c("GRSM", "GPCM", "2PL")) { GPCM <- TRUE } k <- apply(Y, 2, function(x) { length(levels(as.factor(x))) }) if (all(k == 2) | model %in% c("RM", "2PL")) { DSF <- FALSE control$cv.crit <- "deviance" } if (length(unique(k)) > 1 & RSM) { stop("Models RSM and GRSM cannot be used for unequal numbers of response categories!") } design_list <- design_GPCMlasso(formula = formula, data = data, Y = Y, RSM = RSM, GPCM = GPCM, DSF = DSF, all.dummies = control$all.dummies, main.effects = main.effects) if (design_list$m == 0) { control$lambda <- 0 control$adaptive <- FALSE cv <- FALSE } if (length(control$lambda) == 1) { cv <- FALSE } loglik_fun <- loglikPCMlasso score_fun <- scorePCMlasso log_score_fun <- loglikscorePCMlasso2 if (all(k == 2)) { loglik_fun <- loglikDIFlasso score_fun <- scoreDIFlasso log_score_fun <- loglikscoreDIFlasso2 } fit <- fit_GPCMlasso(model = model, loglik_fun = loglik_fun, acoefs2 = acoefs2, score_fun = score_fun, log_score_fun, design_list = design_list, control = control, start = NULL, scale_fac = 1, main.effects = main.effects) if (is.null(control$lambda)) { control$lambda <- fit$lambda } coefficients <- fit$coefficients coef.rescal <- fit$coef.rescal logLik <- fit$logLik df <- fit$df BIC <- -2 * logLik + log(design_list$n) * df AIC <- -2 * logLik + 2 * df cAIC <- -2 * logLik + 2 * df + 2 * df * (df - 1)/(design_list$n - df - 1) if (cv) { cv_error <- fit_cv_GPCMlasso(model, design_list, control, score_fun, loglik_fun, log_score_fun, Y) } else { cv_error <- NULL } ret.list <- list(coefficients = coefficients, logLik = logLik, cv_error = cv_error, call = match.call(), model = model, data = data, control = control, DSF = DSF, formula = formula, item.names = item.names, Y = Y, design_list = design_list, AIC = AIC, BIC = BIC, cAIC = cAIC, df = df, coef.rescal = coef.rescal, main.effects = main.effects) class(ret.list) <- "GPCMlasso" return(ret.list) } GPCMlasso2(formula = cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control=ctrl_GPCMlasso(lambda=0.0000000000001),acoefs2 = u) u ## create responses for acat from ordinal values createResponse <- function(Y){ Y <- as.factor(Y) model.matrix(~0+Y)[,-length(levels(Y))] } design_GPCMlasso <- function(formula = formula, Y=Y, data = data, RSM = RSM, GPCM = GPCM, DSF = DSF, all.dummies = TRUE, main.effects = main.effects){ ## extract covariates if(all.dummies){ term.labels <- attr(terms(formula), "term.labels") X <- matrix(rep(1,nrow(data))) for(ij in 1:length(term.labels)){ x.now <- data[,term.labels[ij], drop = FALSE] if(is.factor(x.now[,1])){ if(nlevels(x.now[,1])==2){ X <- cbind(X,model.matrix(~.,data=x.now)[,-1,drop=FALSE]) }else{ X <- cbind(X,model.matrix(~0+.,data=x.now)) } }else{ X <- cbind(X,model.matrix(~.,data=x.now)[,-1,drop=FALSE]) } } X <- X[,-1,drop = FALSE] }else{ X <- model.matrix(formula, data = data) if(ncol(X)>=1){ if(colnames(X)[1]=="(Intercept)"){ X <- X[,-1,drop = FALSE] } } } x.names <- colnames(X) ## factorize response vector ## initialize basic parameters k <- apply(Y, 2, function(x){length(levels(as.factor(x)))}) q <- k-1 n <- nrow(Y) I <- ncol(Y) m <- ncol(X) n_sigma <- 1 if(GPCM){ n_sigma <- I } ## get final response vector if(all(q==1)){ response <- as.numeric(as.factor(c(t(Y))))-1 }else{ response <- lapply(as.data.frame(Y),createResponse) response <- c(t(do.call("cbind",response))) } ## total number of parameters to be optimized px <- sum(q)+n_sigma if(RSM){ px <- q[1]+I+n_sigma-1 } ## scale X and save standard deviations for re-scaling # X <- scale(X, center = FALSE) X <- scale(X, center = FALSE, scale = apply(X, 2, sd, na.rm = TRUE)) sd.vec <- attributes(X)$scale sd.vec <- create.sd.vec(sd.vec, DSF, px, n_sigma, I, q, main.effects) ## create design matrix for basic item parameters if(!RSM){ design <- -diag(px-n_sigma) }else{ design <- -cbind(matrix(rep(diag(I),each=q[1]),ncol=I), matrix(rep(diag(q[1]),I),ncol=q[1],byrow = TRUE))[,-(I+1)] } ## create design matrix for covariate part if(m>=1){ designX <- -get_designX(X, DSF, m, I, q, n) ## create penalization matrix acoefs <- get_acoefs(RSM, DSF, m, I, q, n_sigma) ## update number of parameters to be optimized px <- px + ncol(designX) }else{ ## dummy matrix in case no covariates are specified designX <- matrix(0,0,0) acoefs <- matrix(0,nrow=px,ncol=1) } if(main.effects){ design.main <- matrix(rep(X, each = sum(q)),ncol = ncol(X)) designX <- cbind(design.main, designX) acoefs <- rbind(matrix(0, ncol = ncol(acoefs), nrow = ncol(design.main)), acoefs) px <- px + ncol(X) } ret.list <- list(q = q, I = I, m = m, px = px, n = n, response = response, design = design, designX = designX, sd.vec = sd.vec, acoefs = acoefs, n_sigma = n_sigma, x.names = x.names, RSM = RSM, GPCM = GPCM, Y = Y, DSF = DSF) return(ret.list) } create.sd.vec <- function(sd.vec, DSF, px, n_sigma, I, q, main.effects){ if(DSF){ new_vec <- rep(sd.vec, sum(q)) }else{ new_vec <- rep(sd.vec, I) } if(main.effects){ new_vec <- c(sd.vec, new_vec) } new_vec <- c(rep(1,px-n_sigma),new_vec,rep(1,n_sigma)) new_vec } GPCMlasso2(formula = cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control=ctrl_GPCMlasso(lambda=0.0000000000001),acoefs2 = u) get_designX <- function(X, DSF, m, I, q, n){ if(!DSF){ designX <- matrix(0, ncol = m * I, nrow = n * sum(q)) pos_u <- 1 for (u in 1:n) { for(uu in 1:I){ designX[pos_u:(pos_u+q[uu]-1), ((uu - 1) * m + 1):(uu * m)] <- matrix(rep(X[u,], q[uu]), byrow = TRUE, ncol = m, nrow = q[uu]) pos_u <- pos_u+q[uu] } } }else{ designX <- matrix(0, ncol = m * sum(q), nrow = n * sum(q)) pos_u <- 1 for (u in 1:n) { pos_uu <- 1 for(uu in 1:I){ for(uuu in 1:q[uu]){ designX[pos_u, pos_uu:(pos_uu+m-1)] <- X[u,] pos_u <- pos_u+1 pos_uu <- pos_uu+m } } } } return(designX) } get_acoefs_old <- function(RSM, DSF, m, I, q, n_sigma){ if(!DSF){ pen1 <- diag(m*I) }else{ pen1 <- matrix(0,nrow=m*sum(q),ncol=m*sum(choose(q,2))) pos1 <-1 pos_pos <- 1 for(u in 1:I){ n_comb <- choose(q[u],2) if(n_comb>0){ combis <- combn(q[u],2)-1 for(uuu in 1:m){ for(uu in 1:n_comb){ pen1[combis[1,uu]*m+pos_pos,pos1] <- 1 pen1[combis[2,uu]*m+pos_pos,pos1] <- -1 pos1 <- pos1+1 } pos_pos <- pos_pos+1 } pos_pos <- pos_pos+(q[u]-1)*m } } pen1 <- cbind(diag(m*sum(q)),pen1) } if(RSM){ acoefs <- rbind(matrix(0,nrow=q[1]+I-1,ncol=ncol(pen1)),pen1, matrix(0, ncol = ncol(pen1), nrow = n_sigma)) }else{ acoefs <- rbind(matrix(0,nrow=sum(q),ncol=ncol(pen1)),pen1, matrix(0, ncol = ncol(pen1), nrow = n_sigma)) } } get_acoefs <- function(RSM, DSF, m, I, q, n_sigma){ if(!DSF){ pen1 <- diag(m*I) }else{ pen1 <- matrix(0,nrow=m*sum(q),ncol=m*sum(q-1)) pos1 <-1 pos_pos <- 1 for(u in 1:I){ n_comb <- q[u] - 1 if(n_comb>0){ combis <- rep(1:q[u], each = 2) combis <- matrix(combis[-c(1,length(combis))]-1, nrow = 2) for(uuu in 1:m){ for(uu in 1:n_comb){ pen1[combis[1,uu]*m+pos_pos,pos1] <- 1 pen1[combis[2,uu]*m+pos_pos,pos1] <- -1 pos1 <- pos1+1 } pos_pos <- pos_pos+1 } pos_pos <- pos_pos+(q[u]-1)*m } } pen1 <- cbind(diag(m*sum(q)),pen1) } if(RSM){ acoefs <- rbind(matrix(0,nrow=q[1]+I-1,ncol=ncol(pen1)),pen1, matrix(0, ncol = ncol(pen1), nrow = n_sigma)) }else{ acoefs <- rbind(matrix(0,nrow=sum(q),ncol=ncol(pen1)),pen1, matrix(0, ncol = ncol(pen1), nrow = n_sigma)) } } GPCMlasso2(formula = cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control=ctrl_GPCMlasso(lambda=0.0000000000001),acoefs2 = u) # Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 loglikPCMlasso <- function(alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) { .Call(`_GPCMlasso_loglikPCMlasso`, alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) } scorePCMlasso <- function(alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) { .Call(`_GPCMlasso_scorePCMlasso`, alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) } loglikDIFlasso <- function(alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) { .Call(`_GPCMlasso_loglikDIFlasso`, alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) } scoreDIFlasso <- function(alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) { .Call(`_GPCMlasso_scoreDIFlasso`, alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) } loglikscorePCMlasso <- function(alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) { .Call(`_GPCMlasso_loglikscorePCMlasso`, alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) } loglikscoreDIFlasso <- function(alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) { .Call(`_GPCMlasso_loglikscoreDIFlasso`, alpha, Y, X, Z, Q, q, n, I, px, GHweights, GHnodes, acoefs, lambda, lambda2, cvalue, cores, weight, n_sigma, scale_fac) } GPCMlasso2(formula = cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control=ctrl_GPCMlasso(lambda=0.0000000000001),acoefs2 = u) library(GPCMlasso) trace(GPCMlasso,edit=T) library(GPCMlasso) View(GPCMlasso) u aaa aaa <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Data/NoDIF/N',100,'/scenario_',"5A_100",'.csv')) aaa <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N',100,'/scenario_',"5A_100",'.csv')) aaaa <- aaa[aaa$replication==1,] GPCMlasso(formula=cbind('item1','item2',"item3","item4")~TT,data=aaaa,model="PCM") GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM") GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00001)) acc <- matrix(nrow = 10,ncol=4,0) acc GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00001),acoefs2 = acc) acc[6,1]1 acc[6,1]<-1 acc acc[7,2]<-1 acc[8,3]<-1 acc[9,4]<-1 acc GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00001),acoefs2 = acc) library(TAM) tam.mml(resp=aaaa[,c('item1',"item2","item3","item4")],group=aaaa[,'TT']) zzz <- tam.mml(resp=aaaa[,c('item1',"item2","item3","item4")],group=aaaa[,'TT']) summary(zzz) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00001),acoefs2 = acc) acc <- matrix(nrow = 10,ncol=4,0) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00001),acoefs2 = acc) summary(zzz) remove.packages(GPCMlasso) remove.packages("GPCMlasso") install.packages("GPCMlasso") install.packages("GPCMlasso") library(GPCMlasso) View(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00001)) tam.mml(resp=aaaa[,c('item1',"item2","item3","item4")],group=aaaa[,'TT']) library(tam.mml) library(TAM) tam.mml(resp=aaaa[,c('item1',"item2","item3","item4")],group=aaaa[,'TT']) tam.mml(resp=aaaa[,c('item1',"item2","item3","item4")],group=aaaa[,'TT']) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00001)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.000000000000000000001)) remove.packages("GPCMlasso") install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.000000000000000000001)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),acoefs=acc) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),acoefs2=acc) View(GPCMlasso) library(GPCMlasso) View(GPCMlasso) aaa <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Data/NoDIF/N',100,'/scenario_',"5A_100",'.csv')) aaa <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N',100,'/scenario_',"5A_100",'.csv')) aaaa <- aaa[aaa$replication==1,] acc <- matrix(nrow = 10,ncol=4,0) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),acoefs2=acc) acc[6,1] <- 1;acc[7,2] <- 1;acc[8,3] <- 1;acc[9,4] <- 1 acc GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),acoefs2=acc) remove.packages("GPCMlasso") install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 100)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 1000)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001))$coefficients install.packages("geoR") library(geoR) nlmP nlmP() .nlmP() geoR::.nlmP remove.packages("GPCMlasso") install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001)) remove.packages("GPCMlasso") install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001))$design_list GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),DSF = T) summary(GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),DSF = T)) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),DSF = T) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),DSF = F) library(TAM) tam.mml(resp = aaaa[,c("item1","item2","item3","item4")],group=aaaa[,"TT"],irtmodel="PCM2") summary(tam.mml(resp = aaaa[,c("item1","item2","item3","item4")],group=aaaa[,"TT"],irtmodel="PCM2")) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),DSF = F) summary(tam.mml(resp = aaaa[,c("item1","item2","item3","item4")],group=aaaa[,"TT"],irtmodel="PCM2")) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),DSF = F) summary(tam.mml(resp = aaaa[,c("item1","item2","item3","item4")],group=aaaa[,"TT"],irtmodel="PCM2")) summary(tam.jml(resp = aaaa[,c("item1","item2","item3","item4")],group=aaaa[,"TT"],irtmodel="PCM2")) summary(tam.jml(resp = aaaa[,c("item1","item2","item3","item4")],group=aaaa[,"TT"])) summary(tam(resp = aaaa[,c("item1","item2","item3","item4")],group=aaaa[,"TT"])) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),DSF = F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000000000000000001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000000000000000000001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 10),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 1),DSF = F,cv=F) summary(tam(resp = aaaa[,c("item1","item2","item3","item4")],group=aaaa[,"TT"])) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 1),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.5),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.1),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.01),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00000001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.01),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.00000001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000001),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0.0000005),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F)$design_list install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) remove.packages('GPCMlasso') install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F)$design_list remove.packages("PCMlasso") remove.packages("GPCMlasso") install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F)$design_list library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F)$design_list GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) remove.packages("GPCMlasso") install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F)$design_list remove.packages("GPCMlasso") install.packages('/home/corentin/Documents/These/Recherche/GPCMlasso_0.1-7.tar.gz') library(GPCMlasso) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT:item1,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~I(TT:item1*0),data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT:item1*0,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) aaaa$item1tt <- 1-aaaa$item1 GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT:item1tt,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) aaaa$item2tt <- 1-aaaa$item2 aaaa$item3tt <- 1-aaaa$item3 aaaa$item1 aaaa$item4tt <- 1-aaaa$item4 GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT:item1tt+TT:item2TT+TT:item3tt+TT:item4tt,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT:item1tt+TT:item2tt+TT:item3tt+TT:item4tt,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT*item1tt,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F) GPCMlasso(formula=cbind(item1,item2,item3,item4)~TT*item1tt+TT*item2tt+TT*item3tt+TT*item4tt,data=aaaa,model="PCM",control = ctrl_GPCMlasso(lambda = 0),DSF = F,cv=F)