{smcl}
{* 5may2013}{...}
{hline}
help for {hi:mmsrm}
{hline}

{title:Estimation of the parameters of a Multidimensional Marginally Sufficient Rasch Model (MMSRM)}

{p 8 14 2}{cmd:mmsrm} {it:varlist} {cmd:id}({it:varname}) [{cmd:,} {cmdab:part:ition}({it:numlist}) {cmdab:nodet:ails} {cmdab:trac:e} {cmdab:it:erate}({it:#}) {cmdab:ad:apt} {cmdab:meth:od}({it:mml/gee})]

{p 8 14 2}{it:varlist} is a list of two existing binary variables or more.

{title:Description}

{p 4 8 2}{cmd:mmsrm} estimates by marginal maximum likelihood (MML) or
generalized estimating equations (GEE) the parameters of the Multidimensional
Marginally Sufficient Rasch Model (MMSRM) defined by Hardouin and Mesbah (2004).
This model is an Item Response Model (IRM) with one or several latent traits.
This is a particular multidimensionnal extension of the Rasch model. In this
model, the items are separated in Q groups and each group of items is linked to
one and only one latent trait. Each group fits a Rasch model relatively to the
corresponding latent trait, so the score computed in each group of item is a
sufficient statistics of this latent trait (to a specific value of this score
is associated only one value for the latent trait). The program allows
computing the parameter of a MMSRM with less than 4 latent traits.
To improve the time of computing, the difficulty parameters are estimated in
each unidimensional Rasch model and used as an offset variable to estimate the
parameters of the distribution of the multidimensional latent trait. This model 
allows estimating the correlations between different latent traits measured by
Rasch models.

{title:Options}

{p 4 8 2}{cmd:id} defines an identifiant variable of the individuals.

{p 4 8 2}{cmd:partition} allows defining the number of items relied to each
latent trait. The sum of the numbers indicated in the {it:numlist} must be
equal to the total number of items. The number of elements indicates the number of
latent traits. The items are taken in the same order than this one of {it:varlist}.
By default, only one latent trait is assumed (Rasch model). The number of elements of 
{cmd:partition} must be inferior or equal to 3.

{p 4 8 2}{cmd:method} defines the estimation method between the marginal maximum 
likelihood ({it:mml} - by default) and the generalized estimating equations ({it:gee}). 
You cannot estimate the parameters of a MMSRM with 3 dimensions with the GEE method.

{p 4 8 2}{cmd:nodetails} deletes the details about the procedure.

{p 4 8 2}{cmd:trace} displays details about the estimation algorithm.

{p 4 8 2}{cmd:iterate} defines the maximal number of iterations of the estimation algorithm
 (30 by default).

{p 4 8 2}{cmd:adapt} allows using the adaptive quadrature if you use the MML method of estimation. This option
is useless if you use GEE.

{title:Example}

{p 16 22 2}	{inp:. mmsrm item1-item9 , part(4 5) trace method(gee)}

{p 16 22 2}	{inp:. mmsrm item1 item2 item3 item4 /*Rasch model*/}

{p 16 22 2}	{inp:. mmsrm c1-c9 , part(3 3 3) nodetails adapt iterate(10)}

{title:References}

{p 4 8 2}Hardouin J.-B. and Mesbah M. Clustering binary variables in subscales using an extended Rasch model and Akaike Information Criterion. {it:Communications in Statistics - Theory and Methods}, {cmd:33}(6), pp. 1277-1294, (2004).

{title:Author}

{p 4 8 2}Jean-Benoit Hardouin, Regional Health Observatory (ORS) - 1, rue Porte Madeleine - BP 2439 - 45032 Orleans Cedex 1 - France.
You can contact the author at {browse "mailto:jean-benoit.hardouin@neuf.fr":jean-benoit.hardouin@neuf.fr} and visit the websites {browse "http://anaqol.free.fr":AnaQol} and {browse "http://freeirt.free.fr":FreeIRT}