############################################################################## #----------------------------------------------------------------------------# ############################ BOXPLOTS H0 SCENARIOS ########################### #----------------------------------------------------------------------------# ############################################################################## ## Proportion of rejected h0 per dif value in h0 scenarios (A) by DIF size res.null <- res.dat[res.dat$eff.size==0,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2,1),xlab='DIF size',ylab='H0 rejection proportion in target scenario') res.null0 <- res.dat[res.dat$eff.size==0 & res.dat$dif.size==0,] points(y=res.null0$h0.rejected.p,x=rep(3,nrow(res.null0)),col='gray',pch=3) res.null3 <- res.dat[res.dat$eff.size==0 & res.dat$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.dat[res.dat$eff.size==0 & res.dat$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) ## Proportion of rejected h0 per dif value in h0 scenarios (A) by DIF size par(mfrow=c(2,2)) # 0 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==0,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='No DIF',ylim=c(0,1)) points(y=res.null$h0.rejected.p,x=rep(1,nrow(res.null)),col='#590b0c',pch=3) # 1 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==1,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 1 item',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 2 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==2,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 2 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 3 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==3,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) par(mfrow=c(1,1)) ## Proportion of rejected h0 per dif value in h0 scenarios (A) by DIF size (1 item) J=4 par(mfrow=c(2,2)) # 0 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==0 & res.dat$J==4,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='No DIF',ylim=c(0,1)) points(y=res.null$h0.rejected.p,x=rep(1,nrow(res.null)),col='#590b0c',pch=3) # 1 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==1 & res.dat$J==4,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 1 item',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 2 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==2 & res.dat$J==4,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 2 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) par(mfrow=c(1,1)) ## Proportion of rejected h0 per dif value in h0 scenarios (A) by DIF size (1 item) J=7 par(mfrow=c(2,2)) # 0 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==0 & res.dat$J==7,] nrow(res.null) boxplot(h0.rejected.p~dif.size,data=res.null,col=c(2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='No DIF',ylim=c(0,1)) points(y=res.null$h0.rejected.p,x=rep(1,nrow(res.null)),col='#590b0c',pch=3) # 2 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==2 & res.dat$J==7,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 2 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 3 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==3 & res.dat$J==7,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) par(mfrow=c(1,1)) ############# By N ####### N=100 par(mfrow=c(2,2)) # 0 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==0 & res.dat$N==100,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='No DIF',ylim=c(0,1)) points(y=res.null$h0.rejected.p,x=rep(1,nrow(res.null)),col='#590b0c',pch=3) # 1 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==1 & res.dat$N==100,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 1 item',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 2 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==2 & res.dat$N==100,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 2 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 3 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==3 & res.dat$N==100,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) par(mfrow=c(1,1)) ####### N=200 par(mfrow=c(2,2)) # 0 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==0 & res.dat$N==200,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='No DIF',ylim=c(0,1)) points(y=res.null$h0.rejected.p,x=rep(1,nrow(res.null)),col='#590b0c',pch=3) # 1 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==1 & res.dat$N==200,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 1 item',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 2 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==2 & res.dat$N==200,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 2 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 3 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==3 & res.dat$N==200,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) par(mfrow=c(1,1)) ####### N=300 par(mfrow=c(2,2)) # 0 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==0 & res.dat$N==300,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='No DIF',ylim=c(0,1)) points(y=res.null$h0.rejected.p,x=rep(1,nrow(res.null)),col='#590b0c',pch=3) # 1 item res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==1 & res.dat$N==300,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 1 item',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 2 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==2 & res.dat$N==300,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 2 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) # 3 items res.null <- res.dat[res.dat$eff.size==0 & res.dat$nb.dif==3 & res.dat$N==300,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2),xlab='DIF size', ylab='H0 rejection proportion in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.null[res.null$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.null[res.null$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) par(mfrow=c(1,1)) ############################################################################## #----------------------------------------------------------------------------# ############################ BOXPLOTS H1 SCENARIOS ########################### #----------------------------------------------------------------------------# ############################################################################## ## Proportion of rejected h0 per dif value in h1 scenarios by DIF size // eff.size positive res.null <- res.dat[res.dat$eff.size>0,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2,4,2,3),xlab='DIF size',ylab='H0 rejection proportion in target scenario') res.null0 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0,] points(y=res.null0$h0.rejected.p,x=rep(3,nrow(res.null0)),col='darkblue',pch=3) res.null3 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==-0.3,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==-0.5,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0.3,] points(y=res.null3$h0.rejected.p,x=rep(4,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0.5,] points(y=res.null5$h0.rejected.p,x=rep(5,nrow(res.null5)),col='#053305',pch=3) ############# By N ####### N=100 res.null <- res.dat[res.dat$eff.size>0 & res.dat$N==100,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2,4,2,3),xlab='DIF size',ylab='H0 rejection proportion in target scenario') res.null0 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0 & res.dat$N==100,] points(y=res.null0$h0.rejected.p,x=rep(3,nrow(res.null0)),col='darkblue',pch=3) res.null3 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==-0.3 & res.dat$N==100,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==-0.5 & res.dat$N==100,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0.3 & res.dat$N==100,] points(y=res.null3$h0.rejected.p,x=rep(4,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0.5 & res.dat$N==100,] points(y=res.null5$h0.rejected.p,x=rep(5,nrow(res.null5)),col='#053305',pch=3) ####### N=300 // DIF à 0.5 - QUELS SONT LES SCENARIOS EN HAUT res.null <- res.dat[res.dat$eff.size>0 & res.dat$N==300,] boxplot(h0.rejected.p~dif.size,data=res.null,col=c(3,2,4,2,3),xlab='DIF size',ylab='H0 rejection proportion in target scenario') res.null0 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0 & res.dat$N==300,] points(y=res.null0$h0.rejected.p,x=rep(3,nrow(res.null0)),col='darkblue',pch=3) res.null3 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==-0.3 & res.dat$N==300,] points(y=res.null3$h0.rejected.p,x=rep(2,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==-0.5 & res.dat$N==300,] points(y=res.null5$h0.rejected.p,x=rep(1,nrow(res.null5)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0.3 & res.dat$N==300,] points(y=res.null3$h0.rejected.p,x=rep(4,nrow(res.null3)),col='#590b0c',pch=3) res.null5 <- res.dat[res.dat$eff.size>0 & res.dat$dif.size==0.5 & res.dat$N==300,] points(y=res.null5$h0.rejected.p,x=rep(5,nrow(res.null5)),col='#053305',pch=3) ############################################################################## #----------------------------------------------------------------------------# ########################## SYSTEMATIC ERROR BOXPLOTS ######################### #----------------------------------------------------------------------------# ############################################################################## # Overall boxplot(true.value.in.ci.p~dif.size,data=res.dat,col=c(2,3),xlab='DIF size', ylab='Proportion of true beta value in CI in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.dat[res.dat$dif.size==-0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat[res.dat$dif.size==0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(5,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat[res.dat$dif.size==-0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$dif.size==0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(4,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$dif.size==0,] points(y=res.null3$true.value.in.ci.p,x=rep(3,nrow(res.null3)),col='gray',pch=3) # J=4 res.dat.temp <- res.dat[res.dat$J==4,] boxplot(true.value.in.ci.p~dif.size,data=res.dat.temp,col=c(2,3),xlab='DIF size', ylab='Proportion of true beta value in CI in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(5,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(4,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0,] points(y=res.null3$true.value.in.ci.p,x=rep(3,nrow(res.null3)),col='gray',pch=3) # J=7 res.dat.temp <- res.dat[res.dat$J==7,] boxplot(true.value.in.ci.p~dif.size,data=res.dat.temp,col=c(2,3),xlab='DIF size', ylab='Proportion of true beta value in CI in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(5,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(4,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0,] points(y=res.null3$true.value.in.ci.p,x=rep(3,nrow(res.null3)),col='gray',pch=3) # J=4 / 1 DIF res.dat.temp <- res.dat[res.dat$J==4 & res.dat$nb.dif==1,] boxplot(true.value.in.ci.p~dif.size,data=res.dat.temp,col=c(2,3,3,2),xlab='DIF size', ylab='Proportion of true beta value in CI in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(4,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(3,nrow(res.null3)),col='#053305',pch=3) # J=4 / 2 DIF res.dat.temp <- res.dat[res.dat$J==4 & res.dat$nb.dif==2,] boxplot(true.value.in.ci.p~dif.size,data=res.dat.temp,col=c(2,3,3,2),xlab='DIF size', ylab='Proportion of true beta value in CI in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(4,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(3,nrow(res.null3)),col='#053305',pch=3) # J=7 / 2 DIF res.dat.temp <- res.dat[res.dat$J==7 & res.dat$nb.dif==2,] boxplot(true.value.in.ci.p~dif.size,data=res.dat.temp,col=c(2,3,3,2),xlab='DIF size', ylab='Proportion of true beta value in CI in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(4,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(3,nrow(res.null3)),col='#053305',pch=3) # J=7 / 3 DIF res.dat.temp <- res.dat[res.dat$J==7 & res.dat$nb.dif==3,] boxplot(true.value.in.ci.p~dif.size,data=res.dat.temp,col=c(2,3,3,2),xlab='DIF size', ylab='Proportion of true beta value in CI in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.5,] points(y=res.null3$true.value.in.ci.p,x=rep(4,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==-0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat.temp[res.dat.temp$dif.size==0.3,] points(y=res.null3$true.value.in.ci.p,x=rep(3,nrow(res.null3)),col='#053305',pch=3) ############################################################################## #----------------------------------------------------------------------------# ########################## BETA SIGN CHANGE BOXPLOTS ######################### #----------------------------------------------------------------------------# ############################################################################## # Overall boxplot(beta.same.sign.truebeta.p~dif.size,data=res.dat,col=c(2,3),xlab='DIF size', ylab='Proportion of estimates with same sign as true value in target scenario',main='DIF on 3 items',ylim=c(0,1)) res.null3 <- res.dat[res.dat$dif.size==-0.5,] points(y=res.null3$beta.same.sign.truebeta.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat[res.dat$dif.size==0.5,] points(y=res.null3$beta.same.sign.truebeta.p,x=rep(5,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat[res.dat$dif.size==-0.3,] points(y=res.null3$beta.same.sign.truebeta.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$dif.size==0.3,] points(y=res.null3$beta.same.sign.truebeta.p,x=rep(4,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$dif.size==0,] points(y=res.null3$beta.same.sign.truebeta.p,x=rep(3,nrow(res.null3)),col='gray',pch=3) # Overall // H0 rejected boxplot(beta.same.sign.truebeta.signif.p~dif.size,data=res.dat,col=c(2,3),xlab='DIF size', ylab='Proportion of estimates with same sign as true value in target scenario',main='When H0 rejected',ylim=c(0,1)) res.null3 <- res.dat[res.dat$dif.size==-0.5,] points(y=res.null3$beta.same.sign.truebeta.signif.p,x=rep(1,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat[res.dat$dif.size==0.5,] points(y=res.null3$beta.same.sign.truebeta.signif.p,x=rep(5,nrow(res.null3)),col='#590b0c',pch=3) res.null3 <- res.dat[res.dat$dif.size==-0.3,] points(y=res.null3$beta.same.sign.truebeta.signif.p,x=rep(2,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$dif.size==0.3,] points(y=res.null3$beta.same.sign.truebeta.signif.p,x=rep(4,nrow(res.null3)),col='#053305',pch=3) res.null3 <- res.dat[res.dat$dif.size==0,] points(y=res.null3$beta.same.sign.truebeta.signif.p,x=rep(3,nrow(res.null3)),col='gray',pch=3)