############################################################################## #----------------------------------------------------------------------------# ################################## LIBRARIES ################################# #----------------------------------------------------------------------------# ############################################################################## library(TAM) library(doMC) library(parallel) library(pbmcapply) library(funprog) library(plyr) library(dplyr) library(readxl) lastChar <- function(str){ substr(str, nchar(str), nchar(str)) } source(paste0(getwd(),"/Scripts/Analysis/functions/resali.R")) ############################################################################## #----------------------------------------------------------------------------# ############################# ANALYSIS FUNCTIONS ############################# #----------------------------------------------------------------------------# ############################################################################## pcm_analysis <- function(df=NULL,treatment='TT',irtmodel='PCM2',method='MML') { nbitems <- sum(sapply(1:20,function(x) paste0('item',x)) %in% colnames(df)) resp <- df[,sapply(seq(1,nbitems),function(x) paste0('item',x))] if (method=='MML') { tam1 <- tam.mml(resp=resp,Y=df[,treatment],irtmodel = irtmodel,est.variance = T,verbose=F) } if (method=='JML') { tam1 <- tam.jml(resp=resp,group=1+df[,treatment]) } if (method!='MML' & method!='JML') { stop('Invalid method. Please choose among MML or JML') } return(tam1) } replicate_pcm_analysis_m4 <- function(df=NULL,treatment='TT',irtmodel='PCM2',method='MML',sequence='replication',eff.size=0,difsize=NA,nbdif=0) { nbitems <- sum(sapply(1:20,function(x) paste0('item',x)) %in% colnames(df)) resp <- df[,sapply(seq(1,nbitems),function(x) paste0('item',x))] truebeta <- eff.size if (method=='MML') { n <- max(df[,sequence]) print(n) tam1 <- lapply(seq(1,n), function(x) pcm_analysis(df=df[df[,sequence]==x,],treatment=treatment,irtmodel=irtmodel) ) } listitems <- c(sapply(c('_1','_2','_3'),function(x) paste0(sapply(seq(1,nbitems),function(x) paste0('item',x)),x))) returndat <- data.frame(matrix(nrow=max(df[,sequence]),ncol=length(listitems))) colnames(returndat) <- listitems for (s in seq(1,max(df[,sequence]))) { for (k in seq(1,nbitems)) { returndat[s,paste0('item',k,'_1')] <- tam1[[s]]$item[k,'AXsi_.Cat1'] returndat[s,paste0('item',k,'_2')] <- tam1[[s]]$item[k,'AXsi_.Cat2']-tam1[[s]]$item[k,'AXsi_.Cat1'] returndat[s,paste0('item',k,'_3')] <- tam1[[s]]$item[k,'AXsi_.Cat3']-tam1[[s]]$item[k,'AXsi_.Cat2'] } } returndat <- returndat[,sort_by(listitems, lastChar)] returndat$beta <- sapply(seq(1,max(df[,sequence])),function(k) tam1[[k]]$beta[2]) returndat$se.beta <- 1.413612*sapply(seq(1,max(df[,sequence])),function(k) tam.se(tam1[[k]])$beta$se.Dim1[2] ) returndat$low.ci.beta <- returndat$beta-1.96*returndat$se.beta returndat$high.ci.beta <- returndat$beta+1.96*returndat$se.beta returndat$true.value.in.ci <- 1*(truebeta>returndat$low.ci.beta & truebetareturndat$high.ci.beta) if (truebeta==0) { returndat$beta.same.sign.truebeta <- NA } else { returndat$beta.same.sign.truebeta <- 1*(sign(truebeta)==sign(returndat$beta)) } returndat2 <- data.frame(J=rep(nbitems,max(df[,sequence])), M=1+max(df$item1), N=nrow(df[df$replication==1,])/2, eff.size=truebeta, dif.size= difsize, nb.dif= nbdif ) returndat <- cbind(returndat2,returndat) return(returndat) } replicate_pcm_analysis_m2 <- function(df=NULL,treatment='TT',irtmodel='PCM2',method='MML',sequence='replication',eff.size=0,difsize=NA,nbdif=0) { truebeta <- eff.size nbitems <- sum(sapply(1:20,function(x) paste0('item',x)) %in% colnames(df)) resp <- df[,sapply(seq(1,nbitems),function(x) paste0('item',x))] if (method=='MML') { n <- max(df[,sequence]) print(n) tam1 <- lapply(seq(1,n), function(x) pcm_analysis(df=df[df[,sequence]==x,],treatment=treatment,irtmodel=irtmodel) ) } listitems <- sapply(seq(1,nbitems),function(x) paste0('item',x)) returndat <- data.frame(matrix(nrow=max(df[,sequence]),ncol=length(listitems))) colnames(returndat) <- listitems for (s in seq(1,max(df[,sequence]))) { for (k in seq(1,nbitems)) { returndat[s,paste0('item',k)] <- tam1[[s]]$xsi$xsi[k] } } returndat$beta <- sapply(seq(1,max(df[,sequence])),function(k) tam1[[k]]$beta[2]) returndat$se.beta <- 1.413612*sapply(seq(1,max(df[,sequence])),function(k) tam.se(tam1[[k]])$beta$se.Dim1[2] ) returndat$low.ci.beta <- returndat$beta-1.96*returndat$se.beta returndat$high.ci.beta <- returndat$beta+1.96*returndat$se.beta returndat$true.value.in.ci <- 1*(truebeta>returndat$low.ci.beta & truebetareturndat$high.ci.beta) if (truebeta==0) { returndat$beta.same.sign.truebeta <- NA } else { returndat$beta.same.sign.truebeta <- 1*(sign(truebeta)==sign(returndat$beta)) } returndat2 <- data.frame(J=rep(nbitems,max(df[,sequence])), M=1+max(df$item1), N=nrow(df[df$replication==1,])/2, eff.size=truebeta, dif.size= difsize, nb.dif= nbdif ) returndat <- cbind(returndat2,returndat) return(returndat) } replicate_pcm_analysis<- function(df=NULL,treatment='TT',irtmodel='PCM2',method='MML',sequence='replication',eff.size=0,difsize=NA,nbdif=0) { j <- max(df$item1) if(j==1) { return(replicate_pcm_analysis_m2(df=df,treatment=treatment,irtmodel=irtmodel,method=method,sequence=sequence,eff.size=eff.size,difsize=difsize,nbdif=nbdif)) } else { return(replicate_pcm_analysis_m4(df=df,treatment=treatment,irtmodel=irtmodel,method=method,sequence=sequence,eff.size=eff.size,difsize=difsize,nbdif=nbdif)) } } ############################################################################## #----------------------------------------------------------------------------# ################################# AGGREGATION ################################ #----------------------------------------------------------------------------# ############################################################################## #### Create data.frame results <- c(sapply(c(2,4),function(x) paste0(x,c('A','B','C'))),sapply(c(6,8),function(x) paste0(x,c('A','B','C','D','E')))) results2 <- c(sapply(seq(10,20,2),function(x) paste0(x,c('A','B','C','D','E')))) results <- c(sapply(c(50,100,300),function(x) paste0(results,'_',x))) results2 <- c(sapply(c(50,100,300),function(x) paste0(results2,'_',x))) results <- c(results,results2) results <- c(sapply(1:16,function(x) c(results[x],results[x+16],results[x+32])), sapply(1:30,function(x) c(results[x+48],results[x+30+48],results[x+60+48])) ) #### Compiler function compile_simulation <- function(scenario) { name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2))) if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name<=4) { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N50/scenario_',scenario,'.csv')) } if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>4) { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N50/scenario_',scenario,'.csv')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name<=4) { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N100/scenario_',scenario,'.csv')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>4) { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N100/scenario_',scenario,'_nodif.csv')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name<=4) { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N200/scenario_',scenario,'.csv')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>4) { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N200/scenario_',scenario,'_nodif.csv')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name<=4) { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N300/scenario_',scenario,'.csv')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>4) { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N300/scenario_',scenario,'_nodif.csv')) } if (unique(s$J)==4) { if (unique(s$M)==2) { a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4)) } else { a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3), m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3), m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3), m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3) ) } } else { if (unique(s$M)==2) { a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4), m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7)) } else { a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3), m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3), m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3), m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3), m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3), m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3), m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3) ) } } N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))) zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4)) b <- data.frame(scenario=zz, scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)), N=N, J=unique(s$J), M=unique(s$M), eff.size=unique(s$eff.size), nb.dif=unique(s$nb.dif), dif.size=unique(s$dif.size) ) z <- data.frame(m.beta=mean(s$beta), se.empirical.beta=sd(s$beta), se.analytical.beta=mean(s$se.beta), m.low.ci.beta=mean(s$low.ci.beta), m.high.ci.beta=mean(s$high.ci.beta), true.value.in.ci.p=mean(s$true.value.in.ci), h0.rejected.p=mean(s$h0.rejected), beta.same.sign.truebeta.p=mean(s$beta.same.sign.truebeta,na.rm=T), beta.same.sign.truebeta.signif.p=mean(s[s$h0.rejected==1,]$beta.same.sign.truebeta,na.rm=T)) d <- cbind(b,a,z) d$prop. return(d) } #### Compiled results res.dat <- compile_simulation('2A_50') for (x in results[seq(2,length(results))]) { y <- compile_simulation(x) res.dat <- bind_rows(res.dat,y) } res.dat[res.dat$scenario.type=='A','dif.size'] <- -res.dat[res.dat$scenario.type=='A','dif.size'] res.dat[is.na(res.dat$dif.size),'dif.size'] <- 0 res.dat[res.dat$scenario=="10B",]$dif.size <- 0.3 res.dat[substr(res.dat$scenario,1,1)%in%c("6","8"),'nb.dif'] <- 1 res.dat[substr(res.dat$scenario,1,2)%in%seq(10,16,2),'nb.dif'] <- 2 res.dat[substr(res.dat$scenario,1,2)%in%seq(18,20,2),'nb.dif'] <- 3 res.dat[res.dat$N==50,"dif.size"] <- res.dat[which(res.dat$N==50)+1,"dif.size"] res.dat[res.dat$scenario.type=="B",]$eff.size <- 0.2 res.dat[res.dat$scenario.type=="C" & res.dat$dif.size==0,]$eff.size <- 0.4 res.dat[res.dat$scenario.type=="C" & res.dat$dif.size!=0,]$eff.size <- 0.2 res.dat[res.dat$scenario.type=="D" & res.dat$dif.size!=0,]$eff.size <- 0.4 res.dat[res.dat$scenario.type=="E" & res.dat$dif.size!=0,]$eff.size <- 0.4 is.nan.data.frame <- function(x) { do.call(cbind, lapply(x, is.nan)) } res.dat[is.nan(res.dat)] <- NA res.dat$bias <- res.dat$eff.size-res.dat$m.beta ############################################################################## #----------------------------------------------------------------------------# ########################### AGGREGATION DIF MATRICES ######################### #----------------------------------------------------------------------------# ############################################################################## #### Create data.frame results <- c(sapply(c(2,4),function(x) paste0(x,c('A','B','C'))),sapply(c(6,8),function(x) paste0(x,c('A','B','C','D','E')))) results2 <- c(sapply(seq(10,20,2),function(x) paste0(x,c('A','B','C','D','E')))) results <- c(sapply(c(50,100,300),function(x) paste0(results,'_',x))) results2 <- c(sapply(c(50,100,300),function(x) paste0(results2,'_',x))) results <- c(results,results2) results <- c(sapply(1:16,function(x) c(results[x],results[x+16],results[x+32])), sapply(1:30,function(x) c(results[x+48],results[x+30+48],results[x+60+48])) ) results <- results[19:length(results)] #### Compiler function compile_simulation2 <- function(scenario) { name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2))) if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>4) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N50/',scenario,'.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>4) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N100/',scenario,'.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>4) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N200/',scenario,'.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>4) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N300/',scenario,'.xls')) } J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s)))) M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) )) if (M==1) {M <- 2} nb.dif <- max(which(sapply(1:3,function(x) paste0('dif',x) %in% colnames(s) | paste0('dif',x,'_1') %in% colnames(s)))) if (J==4) { if (M==2) { a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4)) } else { a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3), m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3), m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3), m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3) ) } } else { if (M==2) { a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4), m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7)) } else { a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3), m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3), m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3), m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3), m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3), m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3), m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3) ) } } N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))) zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4)) eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size']) dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size']) b <- data.frame(scenario=zz, scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)), N=N, J=J, M=M, eff.size=eff.size, nb.dif=nb.dif, dif.size=dif.size ) true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0) num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0) z <- data.frame(m.beta=mean(s$beta), se.empirical.beta=sd(s$beta), se.analytical.beta=mean(s$se_beta), m.low.ci.beta=mean(s$beta-1.96*s$se_beta), m.high.ci.beta=mean(s$beta+1.96*s$se_beta), true.value.in.ci.p=mean(true.value.in.ci), h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ), beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p), beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject]) ) d <- cbind(b,a,z) d$prop. return(d) } #### Compiled results res.dat.dif <- compile_simulation2('6A_50') for (x in results[seq(2,length(results))]) { y <- compile_simulation2(x) res.dat.dif <- bind_rows(res.dat.dif,y) } res.dat.dif[is.na(res.dat.dif$dif.size),'dif.size'] <- 0 res.dat.dif[substr(res.dat.dif$scenario,1,1)%in%c("6","8"),'nb.dif'] <- 1 res.dat.dif[substr(res.dat.dif$scenario,1,2)%in%seq(10,16,2),'nb.dif'] <- 2 res.dat.dif[substr(res.dat.dif$scenario,1,2)%in%seq(18,20,2),'nb.dif'] <- 3 res.dat.dif[res.dat.dif$N==50,"dif.size"] <- res.dat.dif[which(res.dat.dif$N==50)+1,"dif.size"] res.dat.dif[res.dat.dif$scenario.type=="B",]$eff.size <- 0.2 res.dat.dif[res.dat.dif$scenario.type=="C" & res.dat.dif$dif.size!=0,]$eff.size <- 0.2 res.dat.dif[res.dat.dif$scenario.type=="D" & res.dat.dif$dif.size!=0,]$eff.size <- 0.4 res.dat.dif[res.dat.dif$scenario.type=="E" & res.dat.dif$dif.size!=0,]$eff.size <- 0.4 res.dat.dif[res.dat.dif$scenario=="10B",]$dif.size <- 0.3 res.dat.dif$bias <- res.dat.dif$eff.size-res.dat.dif$m.beta ############################################################################## #----------------------------------------------------------------------------# ####################### AGGREGATION DIF MATRICES ROSALI ###################### #----------------------------------------------------------------------------# ############################################################################## #### Create data.frame results <- c(sapply(c(2,4),function(x) paste0(x,c('A','B','C'))),sapply(c(6,8),function(x) paste0(x,c('A','B','C','D','E')))) results2 <- c(sapply(seq(10,20,2),function(x) paste0(x,c('A','B','C','D','E')))) results <- c(sapply(c(50,100,300),function(x) paste0(results,'_',x))) results2 <- c(sapply(c(50,100,300),function(x) paste0(results2,'_',x))) results <- c(results,results2) results <- c(sapply(1:16,function(x) c(results[x],results[x+16],results[x+32])), sapply(1:30,function(x) c(results[x+48],results[x+30+48],results[x+60+48])) ) #### Compiler function compile_simulation2_rosali <- function(scenario) { name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2))) if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>0) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N50/',scenario,'_original.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>0) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N100/',scenario,'_original.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>0) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N200/',scenario,'_original.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>0) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N300/',scenario,'_original.xls')) } J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s)))) M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) )) if (M==1) {M <- 2} nb.dif.true <- ifelse(name<=4,0,ifelse(name<=8,1,ifelse(name<=16,2,3))) if (name %in% c(3,4,13:20)) { m.nb.dif.detect <- mean(ifelse(is.na(s$dif_1_1),0, ifelse(is.na(s$dif_2_1),1, ifelse(is.na(s$dif_3_1),2, ifelse(is.na(s$dif_4_1),3, ifelse(is.na(s$dif_5_1),4, ifelse(is.na(s$dif_6_1),5, ifelse(is.na(s$dif_7_1),6,7)))))))) } if (!(name %in% c(3,4,13:20))) { m.nb.dif.detect <- mean(ifelse(is.na(s$dif_1_1),0, ifelse(is.na(s$dif_2_1),1, ifelse(is.na(s$dif_3_1),2, ifelse(is.na(s$dif_4_1),3,4))))) } if (J==4) { if (M==2) { a <- data.frame(m.item1=mean(s$item1_1),m.item2=mean(s$item2_1),m.item3=mean(s$item3_1),m.item4=mean(s$item4_1)) } else { a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3), m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3), m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3), m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3) ) } } else { if (M==2) { a <- data.frame(m.item1=mean(s$item1_1),m.item2=mean(s$item2_1),m.item3=mean(s$item3_1),m.item4=mean(s$item4_1), m.item5=mean(s$item5_1),m.item6=mean(s$item6_1),m.item7=mean(s$item7_1)) } else { a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3), m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3), m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3), m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3), m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3), m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3), m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3) ) } } N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))) zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4)) eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size']) dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size']) b <- data.frame(scenario=zz, scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)), N=N, J=J, M=M, eff.size=eff.size, nb.dif=nb.dif.true, m.nb.dif.detect=m.nb.dif.detect, dif.size=dif.size ) true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0) num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0) dif.d <- mean(sapply(1:1000,function(x) any(!is.na(s[x,paste0("dif_",1:unique(b$J),"_1")])))) if (nb.dif.true==0 & unique(b$J)==4) { prop.perfect <- NA flexible.detect <- NA moreflexible.detect <- NA any.detect <- NA thay.tpr <- NA thay.fpr <- mean(sapply(1:1000,function(x) sum( !is.na(s[x,paste0("dif_detect_",1:4)]) )/4 )) } if (nb.dif.true==0 & unique(b$J)==7) { prop.perfect <- NA flexible.detect <- NA moreflexible.detect <- NA any.detect <- NA thay.tpr <- NA thay.fpr <- mean(sapply(1:1000,function(x) sum( !is.na(s[x,paste0("dif_detect_",1:7)]) )/7 )) } if (nb.dif.true==1 & unique(b$J)==4 & unique(b$M)==4) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==1,s[x,"dif_detect_unif_1"]==1 & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==1,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1")]) ,0) ) flexible.detect <- mean(flexible.detect) moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- moreflexible.detect thay.tpr <- moreflexible.detect thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:4)])!=s[x,"real_dif_1"],na.rm=F)/4,0) )) } if (nb.dif.true==2 & unique(b$J)==4 & unique(b$M)==4) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==2,s[x,"dif_detect_unif_1"]==1 & s[x,"dif_detect_unif_2"]==1 & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==2,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) flexible.detect <- mean(flexible.detect) moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:4)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"]),na.rm=F)/2,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:4)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"])),na.rm=F)/4,0) )) } if (nb.dif.true==2 & unique(b$J)==7 & unique(b$M)==4) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==2,s[x,"dif_detect_unif_1"]==1 & s[x,"dif_detect_unif_2"]==1 & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==2,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) flexible.detect <- mean(flexible.detect) moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"]),na.rm=F)/2,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"])),na.rm=F)/7,0) )) } if (nb.dif.true==3 & unique(b$J)==7 & unique(b$M)==4) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==3,s[x,"dif_detect_unif_1"]==1 & s[x,"dif_detect_unif_2"]==1 & s[x,"dif_detect_unif_3"]==1 & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[3])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==3,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[3])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) ,0) ) flexible.detect <- mean(flexible.detect) moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_3"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_3"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"],s[x,"real_dif_3"]),na.rm=F)/3,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"],s[x,"real_dif_3"])),na.rm=F)/7,0) )) } if (nb.dif.true==1 & unique(b$J)==4 & unique(b$M)==2) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==1, s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- prop.perfect moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- moreflexible.detect thay.tpr <- moreflexible.detect thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:4)])!=s[x,"real_dif_1"],na.rm=F)/4,0) )) } if (nb.dif.true==2 & unique(b$J)==4 & unique(b$M)==2) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==2,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- prop.perfect moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:4)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"]),na.rm=F)/2,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:4)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"])),na.rm=F)/4,0) )) } if (nb.dif.true==2 & unique(b$J)==7 & unique(b$M)==2) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==2,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- prop.perfect moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"]),na.rm=F)/2,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"])),na.rm=F)/7,0) )) } if (nb.dif.true==3 & unique(b$J)==7 & unique(b$M)==2) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==3,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[3])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- prop.perfect moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_3"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_3"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"],s[x,"real_dif_3"]),na.rm=F)/3,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"],s[x,"real_dif_3"])),na.rm=F)/7,0) )) } lrt.pass <- mean(s$lrt_passed) z <- data.frame(m.beta=mean(s$beta), se.empirical.beta=sd(s$beta), se.analytical.beta=mean(s$se_beta), m.low.ci.beta=mean(s$beta-1.96*s$se_beta), m.high.ci.beta=mean(s$beta+1.96*s$se_beta), true.value.in.ci.p=mean(true.value.in.ci), h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ), beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p), beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject]), dif.detected=dif.d, prop.perfect=prop.perfect, flexible.detect=flexible.detect, moreflexible.detect=moreflexible.detect, any.detect=any.detect, thay.tpr=thay.tpr, thay.fpr=thay.fpr, lrt.pass=lrt.pass ) d <- cbind(b,a,z) d$prop. return(d) } #### Compiled results res.dat.dif.rosali <- compile_simulation2_rosali('2A_50') for (x in results[seq(2,length(results))]) { y <- compile_simulation2_rosali(x) res.dat.dif.rosali <- bind_rows(res.dat.dif.rosali,y) } res.dat.dif.rosali[res.dat.dif.rosali$scenario.type=='A','dif.size'] <- -res.dat.dif.rosali[res.dat.dif.rosali$scenario.type=='A','dif.size'] res.dat.dif.rosali[is.na(res.dat.dif.rosali$dif.size),'dif.size'] <- 0 res.dat.dif.rosali[substr(res.dat.dif.rosali$scenario,1,1)%in%c("6","8"),'nb.dif'] <- 1 res.dat.dif.rosali[substr(res.dat.dif.rosali$scenario,1,2)%in%seq(10,16,2),'nb.dif'] <- 2 res.dat.dif.rosali[substr(res.dat.dif.rosali$scenario,1,2)%in%seq(18,20,2),'nb.dif'] <- 3 res.dat.dif.rosali[res.dat.dif.rosali$N==50,"dif.size"] <- res.dat.dif.rosali[which(res.dat.dif.rosali$N==50)+1,"dif.size"] res.dat.dif.rosali[res.dat.dif.rosali$scenario.type=="B",]$eff.size <- 0.2 res.dat.dif.rosali[res.dat.dif.rosali$scenario.type=="C" & res.dat.dif.rosali$dif.size==0,]$eff.size <- 0.4 res.dat.dif.rosali[res.dat.dif.rosali$scenario.type=="C" & res.dat.dif.rosali$dif.size!=0,]$eff.size <- 0.2 res.dat.dif.rosali[res.dat.dif.rosali$scenario.type=="D" & res.dat.dif.rosali$dif.size!=0,]$eff.size <- 0.4 res.dat.dif.rosali[res.dat.dif.rosali$scenario.type=="E" & res.dat.dif.rosali$dif.size!=0,]$eff.size <- 0.4 res.dat.dif.rosali[res.dat.dif.rosali$scenario=="10B",]$dif.size <- 0.3 is.nan.data.frame <- function(x) { do.call(cbind, lapply(x, is.nan)) } res.dat.dif.rosali[is.nan(res.dat.dif.rosali)] <- NA res.dat.dif.rosali$bias <- res.dat.dif.rosali$eff.size-res.dat.dif.rosali$m.beta ############################################################################## #----------------------------------------------------------------------------# ####################### AGGREGATION DIF MATRICES RESALI ###################### #----------------------------------------------------------------------------# ############################################################################## #### Create data.frame results <- c(sapply(c(2,4),function(x) paste0(x,c('A','B','C'))),sapply(c(6,8),function(x) paste0(x,c('A','B','C','D','E')))) results2 <- c(sapply(seq(10,20,2),function(x) paste0(x,c('A','B','C','D','E')))) results <- c(sapply(c(50,100,300),function(x) paste0(results,'_',x))) results2 <- c(sapply(c(50,100,300),function(x) paste0(results2,'_',x))) results <- c(results,results2) results <- c(sapply(1:16,function(x) c(results[x],results[x+16],results[x+32])), sapply(1:30,function(x) c(results[x+48],results[x+30+48],results[x+60+48])) ) #### Compiler function compile_simulation2_resali <- function(scenario) { name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2))) if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>0) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/RESALI/Results/N50/',scenario,'_original.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>0) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/RESALI/Results/N100/',scenario,'_original.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>0) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/RESALI/Results/N200/',scenario,'_original.xls')) } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>0) { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/RESALI/Results/N300/',scenario,'_original.xls')) } J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s)))) M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) )) if (M==1) {M <- 2} nb.dif.true <- ifelse(name<=4,0,ifelse(name<=8,1,ifelse(name<=16,2,3))) if (name %in% c(3,4,13:20)) { m.nb.dif.detect <- mean(ifelse(is.na(s$dif_1_1),0, ifelse(is.na(s$dif_2_1),1, ifelse(is.na(s$dif_3_1),2, ifelse(is.na(s$dif_4_1),3, ifelse(is.na(s$dif_5_1),4, ifelse(is.na(s$dif_6_1),5, ifelse(is.na(s$dif_7_1),6,7)))))))) } if (!(name %in% c(3,4,13:20))) { m.nb.dif.detect <- mean(ifelse(is.na(s$dif_1_1),0, ifelse(is.na(s$dif_2_1),1, ifelse(is.na(s$dif_3_1),2, ifelse(is.na(s$dif_4_1),3,4))))) } if (J==4) { if (M==2) { a <- data.frame(m.item1=mean(s$item1_1),m.item2=mean(s$item2_1),m.item3=mean(s$item3_1),m.item4=mean(s$item4_1)) } else { a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3), m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3), m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3), m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3) ) } } else { if (M==2) { a <- data.frame(m.item1=mean(s$item1_1),m.item2=mean(s$item2_1),m.item3=mean(s$item3_1),m.item4=mean(s$item4_1), m.item5=mean(s$item5_1),m.item6=mean(s$item6_1),m.item7=mean(s$item7_1)) } else { a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3), m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3), m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3), m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3), m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3), m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3), m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3) ) } } N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))) zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4)) eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size']) dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size']) b <- data.frame(scenario=zz, scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)), N=N, J=J, M=M, eff.size=eff.size, nb.dif=nb.dif.true, m.nb.dif.detect=m.nb.dif.detect, dif.size=dif.size ) true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0) num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0) dif.d <- mean(sapply(1:1000,function(x) any(!is.na(s[x,paste0("dif_",1:unique(b$J),"_1")])))) if (nb.dif.true==0 & unique(b$J)==4) { prop.perfect <- NA flexible.detect <- NA moreflexible.detect <- NA any.detect <- NA thay.tpr <- NA thay.fpr <- mean(sapply(1:1000,function(x) sum( !is.na(s[x,paste0("dif_detect_",1:4)]) )/4 )) } if (nb.dif.true==0 & unique(b$J)==7) { prop.perfect <- NA flexible.detect <- NA moreflexible.detect <- NA any.detect <- NA thay.tpr <- NA thay.fpr <- mean(sapply(1:1000,function(x) sum( !is.na(s[x,paste0("dif_detect_",1:7)]) )/7 )) } if (nb.dif.true==1 & unique(b$J)==4 & unique(b$M)==4) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==1,s[x,"dif_detect_unif_1"]==1 & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==1,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1")]) ,0) ) flexible.detect <- mean(flexible.detect) moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- moreflexible.detect thay.tpr <- moreflexible.detect thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:4)])!=s[x,"real_dif_1"],na.rm=F)/4,0) )) } if (nb.dif.true==2 & unique(b$J)==4 & unique(b$M)==4) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==2,s[x,"dif_detect_unif_1"]==1 & s[x,"dif_detect_unif_2"]==1 & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==2,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) flexible.detect <- mean(flexible.detect) moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:4)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"]),na.rm=F)/2,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:4)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"])),na.rm=F)/4,0) )) } if (nb.dif.true==2 & unique(b$J)==7 & unique(b$M)==4) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==2,s[x,"dif_detect_unif_1"]==1 & s[x,"dif_detect_unif_2"]==1 & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==2,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) flexible.detect <- mean(flexible.detect) moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"]),na.rm=F)/2,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"])),na.rm=F)/7,0) )) } if (nb.dif.true==3 & unique(b$J)==7 & unique(b$M)==4) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==3,s[x,"dif_detect_unif_1"]==1 & s[x,"dif_detect_unif_2"]==1 & s[x,"dif_detect_unif_3"]==1 & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[3])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==3,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[3])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) ,0) ) flexible.detect <- mean(flexible.detect) moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_3"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_3"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"],s[x,"real_dif_3"]),na.rm=F)/3,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"],s[x,"real_dif_3"])),na.rm=F)/7,0) )) } if (nb.dif.true==1 & unique(b$J)==4 & unique(b$M)==2) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==1, s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- prop.perfect moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- moreflexible.detect thay.tpr <- moreflexible.detect thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:4)])!=s[x,"real_dif_1"],na.rm=F)/4,0) )) } if (nb.dif.true==2 & unique(b$J)==4 & unique(b$M)==2) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))==2,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:4),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- prop.perfect moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:4)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:4)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:4)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"]),na.rm=F)/2,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:4)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:4)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"])),na.rm=F)/4,0) )) } if (nb.dif.true==2 & unique(b$J)==7 & unique(b$M)==2) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==2,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- prop.perfect moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"]),na.rm=F)/2,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"])),na.rm=F)/7,0) )) } if (nb.dif.true==3 & unique(b$J)==7 & unique(b$M)==2) { perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))==3,s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[1])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[2])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) & s[x,paste0('dif_detect_',which(sapply(paste0("dif_detect_",1:7),function(y) !is.na(s[x,y])))[3])]%in%c(s[x,c("real_dif_1","real_dif_2","real_dif_3")]) ,0) ) prop.perfect <- mean(perfect.detection) flexible.detect <- prop.perfect moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]) & s[x,"real_dif_3"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) moreflexible.detect <- mean(moreflexible.detect) any.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,s[x,"real_dif_1"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_2"]%in%c(s[x,paste0("dif_detect_",1:7)]) | s[x,"real_dif_3"]%in%c(s[x,paste0("dif_detect_",1:7)]),0) ) any.detect <- mean(any.detect) thay.tpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"],s[x,"real_dif_3"]),na.rm=F)/3,0) )) thay.fpr <- mean(sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,paste0("dif_detect_",1:7)]))!=0,sum(!(unlist(s[x,paste0("dif_detect_",1:7)])%in%c(s[x,"real_dif_1"],s[x,"real_dif_2"],s[x,"real_dif_3"])),na.rm=F)/7,0) )) } z <- data.frame(m.beta=mean(s$beta), se.empirical.beta=sd(s$beta), se.analytical.beta=mean(s$se_beta), m.low.ci.beta=mean(s$beta-1.96*s$se_beta), m.high.ci.beta=mean(s$beta+1.96*s$se_beta), true.value.in.ci.p=mean(true.value.in.ci), h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ), beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p), beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject]), dif.detected=dif.d, prop.perfect=prop.perfect, flexible.detect=flexible.detect, moreflexible.detect=moreflexible.detect, any.detect=any.detect ) d <- cbind(b,a,z) d$prop. return(d) } #### Compiled results res.dat.dif.resali <- compile_simulation2_resali('2A_50') for (x in results[seq(2,length(results))]) { y <- compile_simulation2_resali(x) res.dat.dif.resali <- bind_rows(res.dat.dif.resali,y) } res.dat.dif.resali[res.dat.dif.resali$scenario.type=='A','dif.size'] <- -res.dat.dif.resali[res.dat.dif.resali$scenario.type=='A','dif.size'] res.dat.dif.resali[is.na(res.dat.dif.resali$dif.size),'dif.size'] <- 0 res.dat.dif.resali[substr(res.dat.dif.resali$scenario,1,1)%in%c("6","8"),'nb.dif'] <- 1 res.dat.dif.resali[substr(res.dat.dif.resali$scenario,1,2)%in%seq(10,16,2),'nb.dif'] <- 2 res.dat.dif.resali[substr(res.dat.dif.resali$scenario,1,2)%in%seq(18,20,2),'nb.dif'] <- 3 res.dat.dif.resali[res.dat.dif.resali$N==50,"dif.size"] <- res.dat.dif.resali[which(res.dat.dif.resali$N==50)+1,"dif.size"] res.dat.dif.resali[res.dat.dif.resali$scenario.type=="B",]$eff.size <- 0.2 res.dat.dif.resali[res.dat.dif.resali$scenario.type=="C" & res.dat.dif.resali$dif.size==0,]$eff.size <- 0.4 res.dat.dif.resali[res.dat.dif.resali$scenario.type=="C" & res.dat.dif.resali$dif.size!=0,]$eff.size <- 0.2 res.dat.dif.resali[res.dat.dif.resali$scenario.type=="D" & res.dat.dif.resali$dif.size!=0,]$eff.size <- 0.4 res.dat.dif.resali[res.dat.dif.resali$scenario.type=="E" & res.dat.dif.resali$dif.size!=0,]$eff.size <- 0.4 res.dat.dif.resali[res.dat.dif.resali$scenario=="10B",]$dif.size <- 0.3 is.nan.data.frame <- function(x) { do.call(cbind, lapply(x, is.nan)) } res.dat.dif.resali[is.nan(res.dat.dif.resali)] <- NA res.dat.dif.resali$bias <- res.dat.dif.resali$eff.size-res.dat.dif.resali$m.beta ############################################################################## #----------------------------------------------------------------------------# ################################## RASCHPOWER ################################ #----------------------------------------------------------------------------# ############################################################################## ###### Puissance théorique res.dat$theoretical.power <- 0 ### Scénarios N=100 ## Scénarios J=4 / M=4 res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==100,]$theoretical.power <- 0.05 res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==100,]$theoretical.power <- 0.2177 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==100,]$theoretical.power <- 0.2177 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==100,]$theoretical.power <- 0.6586 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==100,]$theoretical.power <- 0.6586 res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==100,]$theoretical.power <- 0.6586 ## Scénarios J=7 / M=4 res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==100,]$theoretical.power <- 0.05 res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==100,]$theoretical.power <- 0.2450 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==100,]$theoretical.power <- 0.2450 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==100,]$theoretical.power <- 0.7136 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==100,]$theoretical.power <- 0.7136 res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==100,]$theoretical.power <- 0.7136 ### Scénarios N=300 ## Scénarios J=4 / M=4 res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==300,]$theoretical.power <- 0.05 res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==300,]$theoretical.power <- 0.5373 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==300,]$theoretical.power <- 0.5373 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==300,]$theoretical.power <- 0.9834 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==300,]$theoretical.power <- 0.9834 res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==300,]$theoretical.power <- 0.9834 ## Scénarios J=7 / M=4 res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==300,]$theoretical.power <- 0.05 res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==300,]$theoretical.power <- 0.5907 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==300,]$theoretical.power <- 0.5907 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==300,]$theoretical.power <- 0.9919 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==300,]$theoretical.power <- 0.9919 res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==300,]$theoretical.power <- 0.9919 ### Scénarios N=50 ## Scénarios J=4 / M=4 res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==50,]$theoretical.power <- 0.05 res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==50,]$theoretical.power <- 0.1339 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==50,]$theoretical.power <- 0.1339 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==50,]$theoretical.power <- 0.3863 res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==50,]$theoretical.power <- 0.3863 res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==50,]$theoretical.power <- 0.3863 ## Scénarios J=7 / M=4 res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==50,]$theoretical.power <- 0.05 res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==50,]$theoretical.power <- 0.1448 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==50,]$theoretical.power <- 0.1448 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==50,]$theoretical.power <- 0.4328 res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==50,]$theoretical.power <- 0.4328 res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==50,]$theoretical.power <- 0.4328 ### DIF scenarios res.dat.dif$theoretical.power <- res.dat[res.dat$dif.size!=0,]$theoretical.power res.dat.dif.rosali$theoretical.power <- res.dat$theoretical.power res.dat.dif.resali$theoretical.power <- res.dat$theoretical.power ############################################################################## #----------------------------------------------------------------------------# ######################### AGGREGATION OF ALL METHODS ######################### #----------------------------------------------------------------------------# ############################################################################## # Items dichotomiques res.dat$method <- "NONE" res.dat.dif$method <- "PERFECT" res.dat.dif.rosali$method <- "ROSALI" res.dat.dif.resali$method <- "RESIDUS" # Items polytomiques res.dat.full <- res.dat[res.dat$M==4,] res.dat.full <- rbind(res.dat.full,res.dat.dif[res.dat.dif$M==4,]) res.dat.full <- rbind.fill(res.dat.full,res.dat.dif.rosali[res.dat.dif.rosali$M==4,]) res.dat.full <- rbind.fill(res.dat.full,res.dat.dif.resali[res.dat.dif.resali$M==4,]) ############################################################################## #----------------------------------------------------------------------------# ############################ ARTICLE TABLE OUTPUT ############################ #----------------------------------------------------------------------------# ############################################################################## # STRATEGY 1 - IGNORE DIF res.dat.article <- res.dat[,c("N","J","eff.size","nb.dif","dif.size", "m.beta","bias","true.value.in.ci.p","h0.rejected.p", "theoretical.power")] colnames(res.dat.article)[3] <- "true.beta" colnames(res.dat.article)[5] <- "true.gamma" colnames(res.dat.article)[6] <- "betahat" colnames(res.dat.article)[8] <- "coverage" colnames(res.dat.article)[9] <- "power" res.dat.article[,6:10] <- round(res.dat.article[,6:10],2) res.dat.article[res.dat.article$true.beta==0,"typeIerror"] <- res.dat.article[res.dat.article$true.beta==0,"power"] res.dat.article[res.dat.article$true.beta==0,"power"] <- NA res.dat.article <- res.dat.article[,c(1:7,11,9:10,8)] res.dat.article[res.dat.article$nb.dif==0,"true.gamma"] <- NA res.dat.article[is.na(res.dat.article)] <- " " res.dat.article$bias <- -1*res.dat.article$bias res.dat.article.ignore <- reshape(res.dat.article[res.dat.article$nb.dif>0,], direction = "wide", idvar = c("J","true.beta","nb.dif",'true.gamma'),timevar = "N" ) write.csv(res.dat.article.ignore,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_ignoreDIF.csv") res.dat.article.nodif.long <- res.dat.article[res.dat.article$nb.dif==0,] res.dat.article.nodif <- reshape(res.dat.article[res.dat.article$nb.dif==0,], direction = "wide", idvar = c("J","true.beta","nb.dif",'true.gamma'),timevar = "N" ) write.csv(res.dat.article.nodif,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_noDIF.csv") res.dat.article <- reshape(res.dat.article[res.dat.article$nb.dif==0,], direction = "wide", idvar = c("J","true.beta","nb.dif",'true.gamma'),timevar = "N" ) write.csv(res.dat.article.nodif,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_noDIF.csv") res.dat.article.2 <- res.dat[,c("N","J","eff.size","nb.dif","dif.size", "m.beta","bias","true.value.in.ci.p","h0.rejected.p", "theoretical.power")] colnames(res.dat.article.2)[3] <- "true.beta" colnames(res.dat.article.2)[5] <- "true.gamma" colnames(res.dat.article.2)[6] <- "betahat" colnames(res.dat.article.2)[8] <- "coverage" colnames(res.dat.article.2)[9] <- "power" res.dat.article.2[,6:10] <- round(res.dat.article.2[,6:10],2) res.dat.article.2[res.dat.article.2$true.beta==0,"typeIerror"] <- res.dat.article.2[res.dat.article.2$true.beta==0,"power"] res.dat.article.2[res.dat.article.2$true.beta==0,"power"] <- NA res.dat.article.2 <- res.dat.article.2[,c(1:7,11,9:10,8)] res.dat.article.2[res.dat.article.2$nb.dif==0,"true.gamma"] <- NA res.dat.article.2[is.na(res.dat.article.2)] <- " " res.dat.article.2$bias <- -1*res.dat.article.2$bias res.dat.article.nodif.2 <- res.dat.article.2[res.dat.article.2$nb.dif==0,] # STRATEGY 2 - ROSALI res.dat.article.rosali <- res.dat.dif.rosali[,c("N","J","eff.size","nb.dif","dif.size", "m.beta","bias","true.value.in.ci.p","h0.rejected.p", "theoretical.power")] colnames(res.dat.article.rosali)[3] <- "true.beta" colnames(res.dat.article.rosali)[5] <- "true.gamma" colnames(res.dat.article.rosali)[6] <- "betahat" colnames(res.dat.article.rosali)[8] <- "coverage" colnames(res.dat.article.rosali)[9] <- "power" res.dat.article.rosali[res.dat.article.rosali$true.beta==0,"typeIerror"] <- res.dat.article.rosali[res.dat.article.rosali$true.beta==0,"power"] res.dat.article.rosali[res.dat.article.rosali$true.beta==0,"power"] <- NA res.dat.article.rosali <- res.dat.article.rosali[,c(1:7,11,9:10,8)] res.dat.article.rosali[res.dat.article.rosali$nb.dif==0,"true.gamma"] <- NA res.dat.article.rosali[is.na(res.dat.article.rosali)] <- " " res.dat.article.rosali$bias <- -1*res.dat.article.rosali$bias res.dat.article.rosali <- reshape(res.dat.article.rosali, direction = "wide", idvar = c("J","true.beta","nb.dif",'true.gamma'),timevar = "N" ) res.dat.article.rosali.dif <- res.dat.article.rosali[res.dat.article.rosali$nb.dif>0,] write.csv(res.dat.article.rosali.dif,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_ROSALI_DIF.csv") res.dat.article.rosali.nodif <- res.dat.article.rosali[res.dat.article.rosali$nb.dif==0,] write.csv(res.dat.article.rosali.nodif,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_ROSALI_noDIF.csv") res.dat.article.rosali.2 <- res.dat.dif.rosali[,c("N","J","eff.size","nb.dif","dif.size", "m.beta","bias","true.value.in.ci.p","h0.rejected.p", "theoretical.power")] colnames(res.dat.article.rosali.2)[3] <- "true.beta" colnames(res.dat.article.rosali.2)[5] <- "true.gamma" colnames(res.dat.article.rosali.2)[6] <- "betahat" colnames(res.dat.article.rosali.2)[8] <- "coverage" colnames(res.dat.article.rosali.2)[9] <- "power" res.dat.article.rosali.2[res.dat.article.rosali.2$true.beta==0,"typeIerror"] <- res.dat.article.rosali.2[res.dat.article.rosali.2$true.beta==0,"power"] res.dat.article.rosali.2[res.dat.article.rosali.2$true.beta==0,"power"] <- NA res.dat.article.rosali.2 <- res.dat.article.rosali.2[,c(1:7,11,9:10,8)] res.dat.article.rosali.2[res.dat.article.rosali.2$nb.dif==0,"true.gamma"] <- NA res.dat.article.rosali.2[is.na(res.dat.article.rosali.2)] <- " " res.dat.article.rosali.2$bias <- -1*res.dat.article.rosali.2$bias res.dat.article.rosali.2.nodif <- res.dat.article.rosali.2[res.dat.article.rosali.2$nb.dif==0,] # STRATEGY 3 - RESIDIF res.dat.article.residif <- res.dat.dif.resali[,c("N","J","eff.size","nb.dif","dif.size", "m.beta","bias","true.value.in.ci.p","h0.rejected.p", "theoretical.power")] colnames(res.dat.article.residif)[3] <- "true.beta" colnames(res.dat.article.residif)[5] <- "true.gamma" colnames(res.dat.article.residif)[6] <- "betahat" colnames(res.dat.article.residif)[8] <- "coverage" colnames(res.dat.article.residif)[9] <- "power" res.dat.article.residif[res.dat.article.residif$true.beta==0,"typeIerror"] <- res.dat.article.residif[res.dat.article.residif$true.beta==0,"power"] res.dat.article.residif[res.dat.article.residif$true.beta==0,"power"] <- NA res.dat.article.residif <- res.dat.article.residif[,c(1:7,11,9:10,8)] res.dat.article.residif[res.dat.article.residif$nb.dif==0,"true.gamma"] <- NA res.dat.article.residif[is.na(res.dat.article.residif)] <- " " res.dat.article.residif$bias <- -1*res.dat.article.residif$bias res.dat.article.residif <- reshape(res.dat.article.residif, direction = "wide", idvar = c("J","true.beta","nb.dif",'true.gamma'),timevar = "N" ) res.dat.article.residif.dif <- res.dat.article.residif[res.dat.article.residif$nb.dif>0,] write.csv(res.dat.article.residif.dif,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_RESIDIF_DIF.csv") res.dat.article.residif.nodif <- res.dat.article.residif[res.dat.article.residif$nb.dif==0,] write.csv(res.dat.article.residif.nodif,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_RESIDIF_noDIF.csv") res.dat.article.residif.2 <- res.dat.dif.resali[,c("N","J","eff.size","nb.dif","dif.size", "m.beta","bias","true.value.in.ci.p","h0.rejected.p", "theoretical.power")] colnames(res.dat.article.residif.2)[3] <- "true.beta" colnames(res.dat.article.residif.2)[5] <- "true.gamma" colnames(res.dat.article.residif.2)[6] <- "betahat" colnames(res.dat.article.residif.2)[8] <- "coverage" colnames(res.dat.article.residif.2)[9] <- "power" res.dat.article.residif.2[res.dat.article.residif.2$true.beta==0,"typeIerror"] <- res.dat.article.residif.2[res.dat.article.residif.2$true.beta==0,"power"] res.dat.article.residif.2[res.dat.article.residif.2$true.beta==0,"power"] <- NA res.dat.article.residif.2 <- res.dat.article.residif.2[,c(1:7,11,9:10,8)] res.dat.article.residif.2[res.dat.article.residif.2$nb.dif==0,"true.gamma"] <- NA res.dat.article.residif.2[is.na(res.dat.article.residif.2)] <- " " res.dat.article.residif.2$bias <- -1*res.dat.article.residif.2$bias res.dat.article.residif.2.nodif <- res.dat.article.residif.2[res.dat.article.residif.2$nb.dif==0,] # STRATEGY 4 - PERFECT-DIF res.dat.article.dif <- res.dat.dif[,c("N","J","eff.size","nb.dif","dif.size", "m.beta","bias","true.value.in.ci.p","h0.rejected.p", "theoretical.power")] colnames(res.dat.article.dif)[3] <- "true.beta" colnames(res.dat.article.dif)[5] <- "true.gamma" colnames(res.dat.article.dif)[6] <- "betahat" colnames(res.dat.article.dif)[8] <- "coverage" colnames(res.dat.article.dif)[9] <- "power" res.dat.article.dif[res.dat.article.dif$true.beta==0,"typeIerror"] <- res.dat.article.dif[res.dat.article.dif$true.beta==0,"power"] res.dat.article.dif[res.dat.article.dif$true.beta==0,"power"] <- NA res.dat.article.dif <- res.dat.article.dif[,c(1:7,11,9:10,8)] res.dat.article.dif[res.dat.article.dif$nb.dif==0,"true.gamma"] <- NA res.dat.article.dif[is.na(res.dat.article.dif)] <- " " res.dat.article.dif$bias <- -1*res.dat.article.dif$bias write.csv(res.dat.article.dif,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_perfect.csv") res.dat.article.dif <- reshape(res.dat.article.dif, direction = "wide", idvar = c("J","true.beta","nb.dif",'true.gamma'),timevar = "N" ) write.csv(res.dat.article.dif,"/home/corentin/Documents/These/Valorisation/Articles/Simulations 1/Tables/res_perfect.csv") res.dat.article.dif.2 <- res.dat.dif[,c("N","J","eff.size","nb.dif","dif.size", "m.beta","bias","true.value.in.ci.p","h0.rejected.p", "theoretical.power")] colnames(res.dat.article.dif.2)[3] <- "true.beta" colnames(res.dat.article.dif.2)[5] <- "true.gamma" colnames(res.dat.article.dif.2)[6] <- "betahat" colnames(res.dat.article.dif.2)[8] <- "coverage" colnames(res.dat.article.dif.2)[9] <- "power" res.dat.article.dif.2[res.dat.article.dif.2$true.beta==0,"typeIerror"] <- res.dat.article.dif.2[res.dat.article.dif.2$true.beta==0,"power"] res.dat.article.dif.2[res.dat.article.dif.2$true.beta==0,"power"] <- NA res.dat.article.dif.2 <- res.dat.article.dif.2[,c(1:7,11,9:10,8)] res.dat.article.dif.2[res.dat.article.dif.2$nb.dif==0,"true.gamma"] <- NA res.dat.article.dif.2[is.na(res.dat.article.dif.2)] <- " " res.dat.article.dif.2$bias <- -1*res.dat.article.dif.2$bias