File restructure + reproduction guide

main
Corentin Choisy 8 months ago
parent 0e9e01eca8
commit 956d04083c

@ -19,7 +19,7 @@ Ce dépôt contient l'ensemble du code pour les simulations basées sur simIRT.
├─ 🗂️ RProject - R SCRIPTS FOR COMPILING RESULTS
└─ 🗂️ Scripts - R AND STATA SCRIPTS
├─ 🗂️ Analysis - PCM ANALYSIS SCRIPTS
├─ 🗂️ R
├─ 🗂️ R - VARIOUS USEFUL R SCRIPTS
└─ 🗂 Scenarios - SIMULATION SCENARIO SCRIPTS
   ├─ 🗂️ DIF
   └─ 🗂️ noDIF
@ -41,3 +41,14 @@ Ce dépôt contient l'ensemble du code pour les simulations basées sur simIRT.
**DIF/XX_N.xls** - Analyse du scénario XX_N par PCM __avec__ prise en compte du DIF
**ROSALI-DIF/XX_N_original.xls** - Analyse du scénario XX_N par PCM __avec__ prise en compte du DIF détecté par ROSALI-DIF
**RESALI/XX_N_original.xls** - Analyse du scénario XX_N par PCM __avec__ prise en compte du DIF détecté par la méthode des résidus de Andrich & Hagquist
## Reproduction
1. Lancer */Scripts/Scenarios/NoDIF/scenarios_noDIF_baseline.do* pour simuler les données des scénarios sans DIF
2. Lancer tous les fichiers dans 🗂️ */Scripts/Scenarios/DIF/* pour simuler les données des scénarios avec DIF
3. Lancer */RProject/Scripts/pcm_nodif.R* pour analyser les données sans prise en compte du DIF
4. Lancer les fichiers dans */Scripts/Analysis/DIF/* pour analyser les données avec prise en compte du DIF
5. Lancer */Scripts/Analysis/DIF-ROSALI/pcm_dif_rosali.do* pour analyser les données avec prise en compte du DIF détecté par ROSALI-DIF
6. Lancer */Scripts/Analysis/DIF-RESIDUS/pcm_dif_residus.do* pour analyser les données avec prise en compte du DIF détecté par la méthode des résidus
7. Lancer */RProject/Scripts/aggregation.R* pour compiler les résultats dans des tableaux complets

@ -0,0 +1,996 @@
##############################################################################
#----------------------------------------------------------------------------#
################################## LIBRARIES #################################
#----------------------------------------------------------------------------#
##############################################################################
library(TAM)
library(doMC)
library(parallel)
library(pbmcapply)
library(funprog)
library(dplyr)
library(readxl)
lastChar <- function(str){
substr(str, nchar(str)-2, nchar(str))
}
##############################################################################
#----------------------------------------------------------------------------#
############################# ANALYSIS FUNCTIONS #############################
#----------------------------------------------------------------------------#
##############################################################################
pcm_analysis <- function(df=NULL,treatment='TT',irtmodel='PCM2',method='MML') {
nbitems <- sum(sapply(1:20,function(x) paste0('item',x)) %in% colnames(df))
resp <- df[,sapply(seq(1,nbitems),function(x) paste0('item',x))]
if (method=='MML') {
tam1 <- tam.mml(resp=resp,Y=df[,treatment],irtmodel = irtmodel,est.variance = T,verbose=F)
}
if (method=='JML') {
tam1 <- tam.jml(resp=resp,group=1+df[,treatment])
}
if (method!='MML' & method!='JML') {
stop('Invalid method. Please choose among MML or JML')
}
return(tam1)
}
replicate_pcm_analysis_m4 <- function(df=NULL,treatment='TT',irtmodel='PCM2',method='MML',sequence='replication',eff.size=0,difsize=NA,nbdif=0) {
nbitems <- sum(sapply(1:20,function(x) paste0('item',x)) %in% colnames(df))
resp <- df[,sapply(seq(1,nbitems),function(x) paste0('item',x))]
truebeta <- eff.size
if (method=='MML') {
n <- max(df[,sequence])
print(n)
tam1 <- lapply(seq(1,n),
function(x) pcm_analysis(df=df[df[,sequence]==x,],treatment=treatment,irtmodel=irtmodel)
)
}
listitems <- c(sapply(c('_1','_2','_3'),function(x) paste0(sapply(seq(1,nbitems),function(x) paste0('item',x)),x)))
returndat <- data.frame(matrix(nrow=max(df[,sequence]),ncol=length(listitems)))
colnames(returndat) <- listitems
for (s in seq(1,max(df[,sequence]))) {
for (k in seq(1,nbitems)) {
returndat[s,paste0('item',k,'_1')] <- tam1[[s]]$item[k,'AXsi_.Cat1']
returndat[s,paste0('item',k,'_2')] <- tam1[[s]]$item[k,'AXsi_.Cat2']-tam1[[s]]$item[k,'AXsi_.Cat1']
returndat[s,paste0('item',k,'_3')] <- tam1[[s]]$item[k,'AXsi_.Cat3']-tam1[[s]]$item[k,'AXsi_.Cat2']
}
}
returndat <- returndat[,sort_by(listitems, lastChar)]
returndat$beta <- sapply(seq(1,max(df[,sequence])),function(k) tam1[[k]]$beta[2])
returndat$se.beta <- 1.413612*sapply(seq(1,max(df[,sequence])),function(k) tam.se(tam1[[k]])$beta$se.Dim1[2] )
returndat$low.ci.beta <- returndat$beta-1.96*returndat$se.beta
returndat$high.ci.beta <- returndat$beta+1.96*returndat$se.beta
returndat$true.value.in.ci <- 1*(truebeta>returndat$low.ci.beta & truebeta<returndat$high.ci.beta)
returndat$h0.rejected <- 1*(0<returndat$low.ci.beta | 0>returndat$high.ci.beta)
if (truebeta==0) {
returndat$beta.same.sign.truebeta <- NA
} else {
returndat$beta.same.sign.truebeta <- 1*(sign(truebeta)==sign(returndat$beta))
}
returndat2 <- data.frame(J=rep(nbitems,max(df[,sequence])),
M=1+max(df$item1),
N=nrow(df[df$replication==1,])/2,
eff.size=truebeta,
dif.size= difsize,
nb.dif= nbdif
)
returndat <- cbind(returndat2,returndat)
return(returndat)
}
replicate_pcm_analysis_m2 <- function(df=NULL,treatment='TT',irtmodel='PCM2',method='MML',sequence='replication',eff.size=0,difsize=NA,nbdif=0) {
truebeta <- eff.size
nbitems <- sum(sapply(1:20,function(x) paste0('item',x)) %in% colnames(df))
resp <- df[,sapply(seq(1,nbitems),function(x) paste0('item',x))]
if (method=='MML') {
n <- max(df[,sequence])
print(n)
tam1 <- lapply(seq(1,n),
function(x) pcm_analysis(df=df[df[,sequence]==x,],treatment=treatment,irtmodel=irtmodel)
)
}
listitems <- sapply(seq(1,nbitems),function(x) paste0('item',x))
returndat <- data.frame(matrix(nrow=max(df[,sequence]),ncol=length(listitems)))
colnames(returndat) <- listitems
for (s in seq(1,max(df[,sequence]))) {
for (k in seq(1,nbitems)) {
returndat[s,paste0('item',k)] <- tam1[[s]]$xsi$xsi[k]
}
}
returndat$beta <- sapply(seq(1,max(df[,sequence])),function(k) tam1[[k]]$beta[2])
returndat$se.beta <- 1.413612*sapply(seq(1,max(df[,sequence])),function(k) tam.se(tam1[[k]])$beta$se.Dim1[2] )
returndat$low.ci.beta <- returndat$beta-1.96*returndat$se.beta
returndat$high.ci.beta <- returndat$beta+1.96*returndat$se.beta
returndat$true.value.in.ci <- 1*(truebeta>returndat$low.ci.beta & truebeta<returndat$high.ci.beta)
returndat$h0.rejected <- 1*(0<returndat$low.ci.beta | 0>returndat$high.ci.beta)
if (truebeta==0) {
returndat$beta.same.sign.truebeta <- NA
} else {
returndat$beta.same.sign.truebeta <- 1*(sign(truebeta)==sign(returndat$beta))
}
returndat2 <- data.frame(J=rep(nbitems,max(df[,sequence])),
M=1+max(df$item1),
N=nrow(df[df$replication==1,])/2,
eff.size=truebeta,
dif.size= difsize,
nb.dif= nbdif
)
returndat <- cbind(returndat2,returndat)
return(returndat)
}
replicate_pcm_analysis<- function(df=NULL,treatment='TT',irtmodel='PCM2',method='MML',sequence='replication',eff.size=0,difsize=NA,nbdif=0) {
j <- max(df$item1)
if(j==1) {
return(replicate_pcm_analysis_m2(df=df,treatment=treatment,irtmodel=irtmodel,method=method,sequence=sequence,eff.size=eff.size,difsize=difsize,nbdif=nbdif))
} else {
return(replicate_pcm_analysis_m4(df=df,treatment=treatment,irtmodel=irtmodel,method=method,sequence=sequence,eff.size=eff.size,difsize=difsize,nbdif=nbdif))
}
}
##############################################################################
#----------------------------------------------------------------------------#
################################# AGGREGATION ################################
#----------------------------------------------------------------------------#
##############################################################################
#### Create data.frame
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)
#### Compiler function
compile_simulation <- function(scenario) {
name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name<=4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N50/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N50/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name<=4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N100/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N100/scenario_',scenario,'_nodif.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name<=4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N200/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N200/scenario_',scenario,'_nodif.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name<=4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N300/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N300/scenario_',scenario,'_nodif.csv'))
}
if (unique(s$J)==4) {
if (unique(s$M)==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3)
)
}
} else {
if (unique(s$M)==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4),
m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3),
m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3),
m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3),
m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3)
)
}
}
N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario)))
zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4))
b <- data.frame(scenario=zz,
scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)),
N=N,
J=unique(s$J),
M=unique(s$M),
eff.size=unique(s$eff.size),
nb.dif=unique(s$nb.dif),
dif.size=unique(s$dif.size)
)
z <- data.frame(m.beta=mean(s$beta),
se.empirical.beta=sd(s$beta),
se.analytical.beta=mean(s$se.beta),
m.low.ci.beta=mean(s$low.ci.beta),
m.high.ci.beta=mean(s$high.ci.beta),
true.value.in.ci.p=mean(s$true.value.in.ci),
h0.rejected.p=mean(s$h0.rejected),
beta.same.sign.truebeta.p=mean(s$beta.same.sign.truebeta,na.rm=T),
beta.same.sign.truebeta.signif.p=mean(s[s$h0.rejected==1,]$beta.same.sign.truebeta,na.rm=T))
d <- cbind(b,a,z)
d$prop.
return(d)
}
#### Compiled results
res.dat <- compile_simulation('1A_100')
for (x in results[seq(2,length(results))]) {
y <- compile_simulation(x)
res.dat <- bind_rows(res.dat,y)
}
res.dat[res.dat$scenario.type=='A','dif.size'] <- -res.dat[res.dat$scenario.type=='A','dif.size']
res.dat[is.na(res.dat$dif.size),'dif.size'] <- 0
res.dat[193:417,'nb.dif'] <- 2
res.dat[417:528,'nb.dif'] <- 3
res.dat[res.dat$scenario.type=="B",]$eff.size <- 0.2
res.dat[res.dat$scenario.type=="C" & res.dat$dif.size==0,]$eff.size <- 0.4
res.dat[res.dat$scenario.type=="C" & res.dat$dif.size!=0,]$eff.size <- 0.2
res.dat[res.dat$scenario.type=="D" & res.dat$dif.size==0,]$eff.size <- -0.2
res.dat[res.dat$scenario.type=="D" & res.dat$dif.size!=0,]$eff.size <- 0.4
res.dat[res.dat$scenario.type=="E" & res.dat$dif.size==0,]$eff.size <- -0.4
res.dat[res.dat$scenario.type=="E" & res.dat$dif.size!=0,]$eff.size <- 0.4
res.dat[res.dat$scenario.type=="F",]$eff.size <- -0.2
res.dat[res.dat$scenario.type=="G",]$eff.size <- -0.4
View(res.dat)
res.dat.simple <- res.dat[,c(1:8,13,16:18)]
res.dat.simple$m.beta <- round(res.dat.simple$m.beta,3)
res.dat.simple
##############################################################################
#----------------------------------------------------------------------------#
########################### AGGREGATION DIF MATRICES #########################
#----------------------------------------------------------------------------#
##############################################################################
#### Create data.frame
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)[81:528]
#### Compiler function
compile_simulation2 <- function(scenario) {
name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>4) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N50/',scenario,'.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>4) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N100/',scenario,'.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>4) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N200/',scenario,'.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>4) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N300/',scenario,'.xls'))
}
J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s))))
M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) ))
if (M==1) {M <- 2}
nb.dif <- max(which(sapply(1:3,function(x) paste0('dif',x) %in% colnames(s) | paste0('dif',x,'_1') %in% colnames(s))))
if (J==4) {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3)
)
}
} else {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4),
m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3),
m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3),
m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3),
m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3)
)
}
}
N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario)))
zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4))
eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size'])
dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size'])
b <- data.frame(scenario=zz,
scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)),
N=N,
J=J,
M=M,
eff.size=eff.size,
nb.dif=nb.dif,
dif.size=dif.size
)
true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta
beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0)
num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0)
z <- data.frame(m.beta=mean(s$beta),
se.empirical.beta=sd(s$beta),
se.analytical.beta=mean(s$se_beta),
m.low.ci.beta=mean(s$beta-1.96*s$se_beta),
m.high.ci.beta=mean(s$beta+1.96*s$se_beta),
true.value.in.ci.p=mean(true.value.in.ci),
h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ),
beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p),
beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject])
)
d <- cbind(b,a,z)
d$prop.
return(d)
}
#### Compiled results
res.dat.dif <- compile_simulation2('5A_100')
for (x in results[seq(2,length(results))]) {
y <- compile_simulation2(x)
res.dat.dif <- bind_rows(res.dat.dif,y)
}
res.dat$bias <- res.dat$eff.size-res.dat$m.beta
res.dat.dif$bias <- res.dat.dif$eff.size-res.dat.dif$m.beta
##############################################################################
#----------------------------------------------------------------------------#
####################### AGGREGATION DIF MATRICES ROSALI ######################
#----------------------------------------------------------------------------#
##############################################################################
#### Create data.frame
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)
#### Compiler function
compile_simulation2_rosali <- function(scenario) {
name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N50/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N100/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N200/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N300/',scenario,'_original.xls'))
}
J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s))))
M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) ))
if (M==1) {M <- 2}
nb.dif <- max(which(sapply(1:3,function(x) paste0('dif',x) %in% colnames(s) | paste0('dif',x,'_1') %in% colnames(s))))
if (J==4) {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3)
)
}
} else {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4),
m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3),
m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3),
m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3),
m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3)
)
}
}
N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario)))
zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4))
eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size'])
dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size'])
b <- data.frame(scenario=zz,
scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)),
N=N,
J=J,
M=M,
eff.size=eff.size,
nb.dif=nb.dif,
dif.size=dif.size
)
true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta
beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0)
num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0)
z <- data.frame(m.beta=mean(s$beta),
se.empirical.beta=sd(s$beta),
se.analytical.beta=mean(s$se_beta),
m.low.ci.beta=mean(s$beta-1.96*s$se_beta),
m.high.ci.beta=mean(s$beta+1.96*s$se_beta),
true.value.in.ci.p=mean(true.value.in.ci),
h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ),
beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p),
beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject])
)
d <- cbind(b,a,z)
d$prop.
return(d)
}
#### Compiled results
res.dat.dif.rosali <- compile_simulation2_rosali('1A_100')
for (x in results[seq(2,length(results))]) {
y <- compile_simulation2_rosali(x)
res.dat.dif.rosali <- bind_rows(res.dat.dif.rosali,y)
}
res.dat.dif.rosali$bias <- res.dat.dif.rosali$eff.size-res.dat.dif.rosali$m.beta
##############################################################################
#----------------------------------------------------------------------------#
################################### RESALI ###################################
#----------------------------------------------------------------------------#
##############################################################################
generate_resali <- function(scenario=NULL,grp=NULL) {
scen <- as.numeric(gsub("[A,B,C,D,E,F,G,_]","",substr(scenario,0,3)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50") {
N <- 50
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100") {
N <- 100
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200") {
N <- 200
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300") {
N <- 300
}
if (scen<5) {
dat <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Data/NoDIF/N',N,'/scenario_',scenario,'.csv'))
}
if (scen>=5) {
dat <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N',N,'/scenario_',scenario,'.csv'))
}
if (scen%in%c(3,4,13:20)) {
res <- resali(df=dat[dat$replication==1,],items = seq(1,7),group=grp,verbose=FALSE)
df_res <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA),
dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA),
dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA),
dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA),
dif.detect.5=ifelse(length(res$dif.items)>=5,res$dif.items[5],NA),
dif.detect.6=ifelse(length(res$dif.items)>=6,res$dif.items[6],NA),
dif.detect.7=ifelse(length(res$dif.items)>=7,res$dif.items[7],NA),
dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA),
dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA),
dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA),
dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA),
dif.detect.unif.5=ifelse(length(res$uniform)>=5,res$uniform[5],NA),
dif.detect.unif.6=ifelse(length(res$uniform)>=6,res$uniform[6],NA),
dif.detect.unif.7=ifelse(length(res$uniform)>=7,res$uniform[7],NA),
N=N,
nbdif=ifelse(scen<=4,0,ifelse(scen<=16,2,3)),
true.dif.1=ifelse(scen<=4,NA,unique(dat[dat$replication==1,]$dif1)),
true.dif.2=ifelse(scen<=4,NA,unique(dat[dat$replication==1,]$dif2)),
true.dif.3=ifelse(scen<=16,NA,unique(dat[dat$replication==1,]$dif3))
)
for (k in 2:1000) {
if (k%%100==0) {
cat(paste0('N=',k,'/1000\n'))
}
res <- resali(df=dat[dat$replication==k,],items = seq(1,7),group=grp,verbose=FALSE)
df_res2 <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA),
dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA),
dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA),
dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA),
dif.detect.5=ifelse(length(res$dif.items)>=5,res$dif.items[5],NA),
dif.detect.6=ifelse(length(res$dif.items)>=6,res$dif.items[6],NA),
dif.detect.7=ifelse(length(res$dif.items)>=7,res$dif.items[7],NA),
dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA),
dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA),
dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA),
dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA),
dif.detect.unif.5=ifelse(length(res$uniform)>=5,res$uniform[5],NA),
dif.detect.unif.6=ifelse(length(res$uniform)>=6,res$uniform[6],NA),
dif.detect.unif.7=ifelse(length(res$uniform)>=7,res$uniform[7],NA),
N=N,
nbdif=ifelse(scen<=4,0,ifelse(scen<=16,2,3)),
true.dif.1=ifelse(scen<=4,NA,unique(dat[dat$replication==k,]$dif1)),
true.dif.2=ifelse(scen<=4,NA,unique(dat[dat$replication==k,]$dif2)),
true.dif.3=ifelse(scen<=16,NA,unique(dat[dat$replication==k,]$dif3)))
df_res <- rbind(df_res,df_res2)
}
}
else if (scen%in%c(1,2,5:12)) {
res <- resali(df=dat[dat$replication==1,],items = seq(1,4),group=grp,verbose=FALSE)
df_res <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA),
dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA),
dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA),
dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA),
dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA),
dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA),
dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA),
dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA),
N=N,
nbdif=ifelse(scen<=4,0,ifelse(scen<=8,1,2)),
true.dif.1=ifelse(scen<=4,NA,unique(dat[dat$replication==1,]$dif1)),
true.dif.2=ifelse(scen<=8,NA,unique(dat[dat$replication==1,]$dif2))
)
for (k in 2:1000) {
if (k%%100==0) {
cat(paste0('N=',k,'/1000\n'))
}
res <- resali(df=dat[dat$replication==k,],items = seq(1,4),group=grp,verbose=FALSE)
df_res2 <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA),
dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA),
dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA),
dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA),
dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA),
dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA),
dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA),
dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA),
N=N,
nbdif=ifelse(scen<=4,0,ifelse(scen<=8,1,2)),
true.dif.1=ifelse(scen<=4,NA,unique(dat[dat$replication==k,]$dif1)),
true.dif.2=ifelse(scen<=8,NA,unique(dat[dat$replication==k,]$dif2)))
df_res <- rbind(df_res,df_res2)
}
}
return(df_res)
}
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)
for (r in results) {
cat(paste0(r,"\n"))
cat(paste0("-------------------------------------------","\n"))
write.csv(generate_resali(r,"TT"),paste0("/home/corentin/Documents/These/Recherche/Simulations/Analysis/RESALI/Detection/",r,".csv"))
cat(paste0("-------------------------------------------","\n"))
}
##############################################################################
#----------------------------------------------------------------------------#
####################### AGGREGATION DIF MATRICES RESALI ######################
#----------------------------------------------------------------------------#
##############################################################################
#### Create data.frame
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)
#### Compiler function
compile_simulation2_resali <- function(scenario) {
name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/resali-DIF/N50/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/resali-DIF/N100/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/resali-DIF/N200/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/resali-DIF/N300/',scenario,'_original.xls'))
}
J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s))))
M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) ))
if (M==1) {M <- 2}
nb.dif <- max(which(sapply(1:3,function(x) paste0('dif',x) %in% colnames(s) | paste0('dif',x,'_1') %in% colnames(s))))
if (J==4) {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3)
)
}
} else {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4),
m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3),
m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3),
m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3),
m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3)
)
}
}
N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario)))
zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4))
eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size'])
dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size'])
b <- data.frame(scenario=zz,
scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)),
N=N,
J=J,
M=M,
eff.size=eff.size,
nb.dif=nb.dif,
dif.size=dif.size
)
true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta
beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0)
num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0)
z <- data.frame(m.beta=mean(s$beta),
se.empirical.beta=sd(s$beta),
se.analytical.beta=mean(s$se_beta),
m.low.ci.beta=mean(s$beta-1.96*s$se_beta),
m.high.ci.beta=mean(s$beta+1.96*s$se_beta),
true.value.in.ci.p=mean(true.value.in.ci),
h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ),
beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p),
beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject])
)
d <- cbind(b,a,z)
d$prop.
return(d)
}
#### Compiled results
res.dat.dif.resali <- compile_simulation2_resali('1A_100')
for (x in results[seq(2,length(results))]) {
y <- compile_simulation2_resali(x)
res.dat.dif.resali <- bind_rows(res.dat.dif.resali,y)
}
res.dat.dif.resali$bias <- res.dat.dif.resali$eff.size-res.dat.dif.resali$m.beta
##############################################################################
#----------------------------------------------------------------------------#
################################## RASCHPOWER ################################
#----------------------------------------------------------------------------#
##############################################################################
###### Puissance théorique
res.dat$theoretical.power <- 0
### Scénarios N=100
## Scénarios J=4 / M=2
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'A') & res.dat$N==100,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'B') & res.dat$N==100,]$theoretical.power <- 0.1543
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'C') & res.dat$N==100,]$theoretical.power <- 0.1543
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'D') & res.dat$N==100,]$theoretical.power <- 0.4627
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'E') & res.dat$N==100,]$theoretical.power <- 0.4627
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'F') & res.dat$N==100,]$theoretical.power <- 0.1543
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'G') & res.dat$N==100,]$theoretical.power <- 0.4627
res.dat[res.dat$scenario %in% paste0(1,'C') & res.dat$N==100,]$theoretical.power <- 0.4627
res.dat[res.dat$scenario %in% paste0(1,'D') & res.dat$N==100,]$theoretical.power <- 0.1543
res.dat[res.dat$scenario %in% paste0(1,'E') & res.dat$N==100,]$theoretical.power <- 0.4627
## Scénarios J=4 / M=4
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==100,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==100,]$theoretical.power <- 0.2177
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==100,]$theoretical.power <- 0.2177
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==100,]$theoretical.power <- 0.6586
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==100,]$theoretical.power <- 0.6586
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'F') & res.dat$N==100,]$theoretical.power <- 0.2177
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'G') & res.dat$N==100,]$theoretical.power <- 0.6586
res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==100,]$theoretical.power <- 0.6586
res.dat[res.dat$scenario %in% paste0(2,'D') & res.dat$N==100,]$theoretical.power <- 0.2177
res.dat[res.dat$scenario %in% paste0(2,'E') & res.dat$N==100,]$theoretical.power <- 0.6586
## Scénarios J=7 / M=2
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'A') & res.dat$N==100,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'B') & res.dat$N==100,]$theoretical.power <- 0.1870
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'C') & res.dat$N==100,]$theoretical.power <- 0.1870
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'D') & res.dat$N==100,]$theoretical.power <- 0.5666
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'E') & res.dat$N==100,]$theoretical.power <- 0.5666
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'F') & res.dat$N==100,]$theoretical.power <- 0.1870
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'G') & res.dat$N==100,]$theoretical.power <- 0.5666
res.dat[res.dat$scenario %in% paste0(3,'C') & res.dat$N==100,]$theoretical.power <- 0.5666
res.dat[res.dat$scenario %in% paste0(3,'D') & res.dat$N==100,]$theoretical.power <- 0.1870
res.dat[res.dat$scenario %in% paste0(3,'E') & res.dat$N==100,]$theoretical.power <- 0.5666
## Scénarios J=7 / M=4
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==100,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==100,]$theoretical.power <- 0.2450
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==100,]$theoretical.power <- 0.2450
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==100,]$theoretical.power <- 0.7136
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==100,]$theoretical.power <- 0.7136
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'F') & res.dat$N==100,]$theoretical.power <- 0.2450
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'G') & res.dat$N==100,]$theoretical.power <- 0.7136
res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==100,]$theoretical.power <- 0.7136
res.dat[res.dat$scenario %in% paste0(4,'D') & res.dat$N==100,]$theoretical.power <- 0.2450
res.dat[res.dat$scenario %in% paste0(4,'E') & res.dat$N==100,]$theoretical.power <- 0.7136
### Scénarios N=200
## Scénarios J=4 / M=2
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'A') & res.dat$N==200,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'B') & res.dat$N==200,]$theoretical.power <- 0.2618
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'C') & res.dat$N==200,]$theoretical.power <- 0.2618
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'D') & res.dat$N==200,]$theoretical.power <- 0.7507
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'E') & res.dat$N==200,]$theoretical.power <- 0.7507
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'F') & res.dat$N==200,]$theoretical.power <- 0.2618
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'G') & res.dat$N==200,]$theoretical.power <- 0.7507
res.dat[res.dat$scenario %in% paste0(1,'C') & res.dat$N==200,]$theoretical.power <- 0.7507
res.dat[res.dat$scenario %in% paste0(1,'D') & res.dat$N==200,]$theoretical.power <- 0.2618
res.dat[res.dat$scenario %in% paste0(1,'E') & res.dat$N==200,]$theoretical.power <- 0.7507
## Scénarios J=4 / M=4
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==200,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==200,]$theoretical.power <- 0.3875
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==200,]$theoretical.power <- 0.3875
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==200,]$theoretical.power <- 0.9161
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==200,]$theoretical.power <- 0.9161
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'F') & res.dat$N==200,]$theoretical.power <- 0.3875
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'G') & res.dat$N==200,]$theoretical.power <- 0.9161
res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==200,]$theoretical.power <- 0.9161
res.dat[res.dat$scenario %in% paste0(2,'D') & res.dat$N==200,]$theoretical.power <- 0.3875
res.dat[res.dat$scenario %in% paste0(2,'E') & res.dat$N==200,]$theoretical.power <- 0.9161
## Scénarios J=7 / M=2
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'A') & res.dat$N==200,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'B') & res.dat$N==200,]$theoretical.power <- 0.3258
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'C') & res.dat$N==200,]$theoretical.power <- 0.3258
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'D') & res.dat$N==200,]$theoretical.power <- 0.8538
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'E') & res.dat$N==200,]$theoretical.power <- 0.8538
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'F') & res.dat$N==200,]$theoretical.power <- 0.3258
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'G') & res.dat$N==200,]$theoretical.power <- 0.8538
res.dat[res.dat$scenario %in% paste0(3,'C') & res.dat$N==200,]$theoretical.power <- 0.8538
res.dat[res.dat$scenario %in% paste0(3,'D') & res.dat$N==200,]$theoretical.power <- 0.3258
res.dat[res.dat$scenario %in% paste0(3,'E') & res.dat$N==200,]$theoretical.power <- 0.8538
## Scénarios J=7 / M=4
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==200,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==200,]$theoretical.power <- 0.4321
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==200,]$theoretical.power <- 0.4321
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==200,]$theoretical.power <- 0.9471
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==200,]$theoretical.power <- 0.9471
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'F') & res.dat$N==200,]$theoretical.power <- 0.4321
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'G') & res.dat$N==200,]$theoretical.power <- 0.9471
res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==200,]$theoretical.power <- 0.9471
res.dat[res.dat$scenario %in% paste0(4,'D') & res.dat$N==200,]$theoretical.power <- 0.4321
res.dat[res.dat$scenario %in% paste0(4,'E') & res.dat$N==200,]$theoretical.power <- 0.9471
### Scénarios N=300
## Scénarios J=4 / M=2
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'A') & res.dat$N==300,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'B') & res.dat$N==300,]$theoretical.power <- 0.3660
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'C') & res.dat$N==300,]$theoretical.power <- 0.3660
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'D') & res.dat$N==300,]$theoretical.power <- 0.8981
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'E') & res.dat$N==300,]$theoretical.power <- 0.8981
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'F') & res.dat$N==300,]$theoretical.power <- 0.3660
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'G') & res.dat$N==300,]$theoretical.power <- 0.8981
res.dat[res.dat$scenario %in% paste0(1,'C') & res.dat$N==300,]$theoretical.power <- 0.8981
res.dat[res.dat$scenario %in% paste0(1,'D') & res.dat$N==300,]$theoretical.power <- 0.3660
res.dat[res.dat$scenario %in% paste0(1,'E') & res.dat$N==300,]$theoretical.power <- 0.8981
## Scénarios J=4 / M=4
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==300,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==300,]$theoretical.power <- 0.5373
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==300,]$theoretical.power <- 0.5373
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==300,]$theoretical.power <- 0.9834
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==300,]$theoretical.power <- 0.9834
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'F') & res.dat$N==300,]$theoretical.power <- 0.5373
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'G') & res.dat$N==300,]$theoretical.power <- 0.9834
res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==300,]$theoretical.power <- 0.9834
res.dat[res.dat$scenario %in% paste0(2,'D') & res.dat$N==300,]$theoretical.power <- 0.5373
res.dat[res.dat$scenario %in% paste0(2,'E') & res.dat$N==300,]$theoretical.power <- 0.9834
## Scénarios J=7 / M=2
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'A') & res.dat$N==300,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'B') & res.dat$N==300,]$theoretical.power <- 0.4550
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'C') & res.dat$N==300,]$theoretical.power <- 0.4550
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'D') & res.dat$N==300,]$theoretical.power <- 0.9584
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'E') & res.dat$N==300,]$theoretical.power <- 0.9584
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'F') & res.dat$N==300,]$theoretical.power <- 0.4550
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'G') & res.dat$N==300,]$theoretical.power <- 0.9584
res.dat[res.dat$scenario %in% paste0(3,'C') & res.dat$N==300,]$theoretical.power <- 0.9584
res.dat[res.dat$scenario %in% paste0(3,'D') & res.dat$N==300,]$theoretical.power <- 0.4550
res.dat[res.dat$scenario %in% paste0(3,'E') & res.dat$N==300,]$theoretical.power <- 0.9584
## Scénarios J=7 / M=4
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==300,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==300,]$theoretical.power <- 0.5907
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==300,]$theoretical.power <- 0.5907
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==300,]$theoretical.power <- 0.9919
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==300,]$theoretical.power <- 0.9919
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'F') & res.dat$N==300,]$theoretical.power <- 0.5907
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'G') & res.dat$N==300,]$theoretical.power <- 0.9919
res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==300,]$theoretical.power <- 0.9919
res.dat[res.dat$scenario %in% paste0(4,'D') & res.dat$N==300,]$theoretical.power <- 0.5907
res.dat[res.dat$scenario %in% paste0(4,'E') & res.dat$N==300,]$theoretical.power <- 0.9919
### Scénarios N=50
## Scénarios J=4 / M=2
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'A') & res.dat$N==50,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'B') & res.dat$N==50,]$theoretical.power <- 0.1013
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'C') & res.dat$N==50,]$theoretical.power <- 0.1013
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'D') & res.dat$N==50,]$theoretical.power <- 0.2615
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'E') & res.dat$N==50,]$theoretical.power <- 0.2615
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'F') & res.dat$N==50,]$theoretical.power <- 0.1013
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'G') & res.dat$N==50,]$theoretical.power <- 0.2615
res.dat[res.dat$scenario %in% paste0(1,'C') & res.dat$N==50,]$theoretical.power <- 0.2615
res.dat[res.dat$scenario %in% paste0(1,'D') & res.dat$N==50,]$theoretical.power <- 0.1013
res.dat[res.dat$scenario %in% paste0(1,'E') & res.dat$N==50,]$theoretical.power <- 0.2615
## Scénarios J=4 / M=4
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==50,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==50,]$theoretical.power <- 0.1339
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==50,]$theoretical.power <- 0.1339
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==50,]$theoretical.power <- 0.3863
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==50,]$theoretical.power <- 0.3863
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'F') & res.dat$N==50,]$theoretical.power <- 0.1339
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'G') & res.dat$N==50,]$theoretical.power <- 0.3863
res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==50,]$theoretical.power <- 0.3863
res.dat[res.dat$scenario %in% paste0(2,'D') & res.dat$N==50,]$theoretical.power <- 0.1339
res.dat[res.dat$scenario %in% paste0(2,'E') & res.dat$N==50,]$theoretical.power <- 0.3863
## Scénarios J=7 / M=2
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'A') & res.dat$N==50,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'B') & res.dat$N==50,]$theoretical.power <- 0.1171
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'C') & res.dat$N==50,]$theoretical.power <- 0.1171
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'D') & res.dat$N==50,]$theoretical.power <- 0.3236
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'E') & res.dat$N==50,]$theoretical.power <- 0.3236
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'F') & res.dat$N==50,]$theoretical.power <- 0.1171
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'G') & res.dat$N==50,]$theoretical.power <- 0.3236
res.dat[res.dat$scenario %in% paste0(3,'C') & res.dat$N==50,]$theoretical.power <- 0.3236
res.dat[res.dat$scenario %in% paste0(3,'D') & res.dat$N==50,]$theoretical.power <- 0.1171
res.dat[res.dat$scenario %in% paste0(3,'E') & res.dat$N==50,]$theoretical.power <- 0.3236
## Scénarios J=7 / M=4
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==50,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==50,]$theoretical.power <- 0.1448
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==50,]$theoretical.power <- 0.1448
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==50,]$theoretical.power <- 0.4328
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==50,]$theoretical.power <- 0.4328
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'F') & res.dat$N==50,]$theoretical.power <- 0.1448
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'G') & res.dat$N==50,]$theoretical.power <- 0.4328
res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==50,]$theoretical.power <- 0.4328
res.dat[res.dat$scenario %in% paste0(4,'D') & res.dat$N==50,]$theoretical.power <- 0.1448
res.dat[res.dat$scenario %in% paste0(4,'E') & res.dat$N==50,]$theoretical.power <- 0.4328
### DIF scenarios
res.dat.dif$theoretical.power <- res.dat[81:nrow(res.dat),]$theoretical.power

@ -2466,862 +2466,3 @@ write.csv(res[[4]],'/home/corentin/Documents/These/Recherche/Simulations/Analysi
write.csv(res[[5]],'/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N50/scenario_20E_50.csv')
write.csv(res[[6]],'/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N50/scenario_20F_50.csv')
write.csv(res[[7]],'/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N50/scenario_20G_50.csv')
##############################################################################
#----------------------------------------------------------------------------#
################################# AGGREGATION ################################
#----------------------------------------------------------------------------#
##############################################################################
#### Create data.frame
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)
#### Compiler function
compile_simulation <- function(scenario) {
name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name<=4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N50/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N50/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name<=4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N100/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N100/scenario_',scenario,'_nodif.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name<=4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N200/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N200/scenario_',scenario,'_nodif.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name<=4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N300/scenario_',scenario,'.csv'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>4) {
s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/NoDIF/N300/scenario_',scenario,'_nodif.csv'))
}
if (unique(s$J)==4) {
if (unique(s$M)==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3)
)
}
} else {
if (unique(s$M)==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4),
m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3),
m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3),
m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3),
m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3)
)
}
}
N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario)))
zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4))
b <- data.frame(scenario=zz,
scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)),
N=N,
J=unique(s$J),
M=unique(s$M),
eff.size=unique(s$eff.size),
nb.dif=unique(s$nb.dif),
dif.size=unique(s$dif.size)
)
z <- data.frame(m.beta=mean(s$beta),
se.empirical.beta=sd(s$beta),
se.analytical.beta=mean(s$se.beta),
m.low.ci.beta=mean(s$low.ci.beta),
m.high.ci.beta=mean(s$high.ci.beta),
true.value.in.ci.p=mean(s$true.value.in.ci),
h0.rejected.p=mean(s$h0.rejected),
beta.same.sign.truebeta.p=mean(s$beta.same.sign.truebeta,na.rm=T),
beta.same.sign.truebeta.signif.p=mean(s[s$h0.rejected==1,]$beta.same.sign.truebeta,na.rm=T))
d <- cbind(b,a,z)
d$prop.
return(d)
}
#### Compiled results
res.dat <- compile_simulation('1A_100')
for (x in results[seq(2,length(results))]) {
y <- compile_simulation(x)
res.dat <- bind_rows(res.dat,y)
}
res.dat[res.dat$scenario.type=='A','dif.size'] <- -res.dat[res.dat$scenario.type=='A','dif.size']
res.dat[is.na(res.dat$dif.size),'dif.size'] <- 0
res.dat[193:417,'nb.dif'] <- 2
res.dat[417:528,'nb.dif'] <- 3
res.dat[res.dat$scenario.type=="B",]$eff.size <- 0.2
res.dat[res.dat$scenario.type=="C" & res.dat$dif.size==0,]$eff.size <- 0.4
res.dat[res.dat$scenario.type=="C" & res.dat$dif.size!=0,]$eff.size <- 0.2
res.dat[res.dat$scenario.type=="D" & res.dat$dif.size==0,]$eff.size <- -0.2
res.dat[res.dat$scenario.type=="D" & res.dat$dif.size!=0,]$eff.size <- 0.4
res.dat[res.dat$scenario.type=="E" & res.dat$dif.size==0,]$eff.size <- -0.4
res.dat[res.dat$scenario.type=="E" & res.dat$dif.size!=0,]$eff.size <- 0.4
res.dat[res.dat$scenario.type=="F",]$eff.size <- -0.2
res.dat[res.dat$scenario.type=="G",]$eff.size <- -0.4
View(res.dat)
res.dat.simple <- res.dat[,c(1:8,13,16:18)]
res.dat.simple$m.beta <- round(res.dat.simple$m.beta,3)
res.dat.simple
##############################################################################
#----------------------------------------------------------------------------#
########################### AGGREGATION DIF MATRICES #########################
#----------------------------------------------------------------------------#
##############################################################################
#### Create data.frame
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)[81:528]
#### Compiler function
compile_simulation2 <- function(scenario) {
name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>4) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N50/',scenario,'.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>4) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N100/',scenario,'.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>4) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N200/',scenario,'.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>4) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/DIF/N300/',scenario,'.xls'))
}
J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s))))
M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) ))
if (M==1) {M <- 2}
nb.dif <- max(which(sapply(1:3,function(x) paste0('dif',x) %in% colnames(s) | paste0('dif',x,'_1') %in% colnames(s))))
if (J==4) {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3)
)
}
} else {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4),
m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3),
m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3),
m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3),
m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3)
)
}
}
N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario)))
zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4))
eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size'])
dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size'])
b <- data.frame(scenario=zz,
scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)),
N=N,
J=J,
M=M,
eff.size=eff.size,
nb.dif=nb.dif,
dif.size=dif.size
)
true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta
beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0)
num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0)
z <- data.frame(m.beta=mean(s$beta),
se.empirical.beta=sd(s$beta),
se.analytical.beta=mean(s$se_beta),
m.low.ci.beta=mean(s$beta-1.96*s$se_beta),
m.high.ci.beta=mean(s$beta+1.96*s$se_beta),
true.value.in.ci.p=mean(true.value.in.ci),
h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ),
beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p),
beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject])
)
d <- cbind(b,a,z)
d$prop.
return(d)
}
#### Compiled results
res.dat.dif <- compile_simulation2('5A_100')
for (x in results[seq(2,length(results))]) {
y <- compile_simulation2(x)
res.dat.dif <- bind_rows(res.dat.dif,y)
}
res.dat$bias <- res.dat$eff.size-res.dat$m.beta
res.dat.dif$bias <- res.dat.dif$eff.size-res.dat.dif$m.beta
##############################################################################
#----------------------------------------------------------------------------#
####################### AGGREGATION DIF MATRICES ROSALI ######################
#----------------------------------------------------------------------------#
##############################################################################
#### Create data.frame
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)
#### Compiler function
compile_simulation2_rosali <- function(scenario) {
name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N50/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N100/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N200/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N300/',scenario,'_original.xls'))
}
J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s))))
M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) ))
if (M==1) {M <- 2}
nb.dif <- max(which(sapply(1:3,function(x) paste0('dif',x) %in% colnames(s) | paste0('dif',x,'_1') %in% colnames(s))))
if (J==4) {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3)
)
}
} else {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4),
m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3),
m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3),
m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3),
m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3)
)
}
}
N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario)))
zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4))
eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size'])
dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size'])
b <- data.frame(scenario=zz,
scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)),
N=N,
J=J,
M=M,
eff.size=eff.size,
nb.dif=nb.dif,
dif.size=dif.size
)
true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta
beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0)
num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0)
z <- data.frame(m.beta=mean(s$beta),
se.empirical.beta=sd(s$beta),
se.analytical.beta=mean(s$se_beta),
m.low.ci.beta=mean(s$beta-1.96*s$se_beta),
m.high.ci.beta=mean(s$beta+1.96*s$se_beta),
true.value.in.ci.p=mean(true.value.in.ci),
h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ),
beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p),
beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject])
)
d <- cbind(b,a,z)
d$prop.
return(d)
}
#### Compiled results
res.dat.dif.rosali <- compile_simulation2_rosali('1A_100')
for (x in results[seq(2,length(results))]) {
y <- compile_simulation2_rosali(x)
res.dat.dif.rosali <- bind_rows(res.dat.dif.rosali,y)
}
res.dat.dif.rosali$bias <- res.dat.dif.rosali$eff.size-res.dat.dif.rosali$m.beta
##############################################################################
#----------------------------------------------------------------------------#
################################### RESALI ###################################
#----------------------------------------------------------------------------#
##############################################################################
generate_resali <- function(scenario=NULL,grp=NULL) {
scen <- as.numeric(gsub("[A,B,C,D,E,F,G,_]","",substr(scenario,0,3)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50") {
N <- 50
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100") {
N <- 100
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200") {
N <- 200
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300") {
N <- 300
}
if (scen<5) {
dat <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Data/NoDIF/N',N,'/scenario_',scenario,'.csv'))
}
if (scen>=5) {
dat <- read.csv(paste0('/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N',N,'/scenario_',scenario,'.csv'))
}
if (scen%in%c(3,4,13:20)) {
res <- resali(df=dat[dat$replication==1,],items = seq(1,7),group=grp,verbose=FALSE)
df_res <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA),
dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA),
dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA),
dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA),
dif.detect.5=ifelse(length(res$dif.items)>=5,res$dif.items[5],NA),
dif.detect.6=ifelse(length(res$dif.items)>=6,res$dif.items[6],NA),
dif.detect.7=ifelse(length(res$dif.items)>=7,res$dif.items[7],NA),
dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA),
dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA),
dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA),
dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA),
dif.detect.unif.5=ifelse(length(res$uniform)>=5,res$uniform[5],NA),
dif.detect.unif.6=ifelse(length(res$uniform)>=6,res$uniform[6],NA),
dif.detect.unif.7=ifelse(length(res$uniform)>=7,res$uniform[7],NA),
N=N,
nbdif=ifelse(scen<=4,0,ifelse(scen<=16,2,3)),
true.dif.1=ifelse(scen<=4,NA,unique(dat[dat$replication==1,]$dif1)),
true.dif.2=ifelse(scen<=4,NA,unique(dat[dat$replication==1,]$dif2)),
true.dif.3=ifelse(scen<=16,NA,unique(dat[dat$replication==1,]$dif3))
)
for (k in 2:1000) {
if (k%%100==0) {
cat(paste0('N=',k,'/1000\n'))
}
res <- resali(df=dat[dat$replication==k,],items = seq(1,7),group=grp,verbose=FALSE)
df_res2 <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA),
dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA),
dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA),
dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA),
dif.detect.5=ifelse(length(res$dif.items)>=5,res$dif.items[5],NA),
dif.detect.6=ifelse(length(res$dif.items)>=6,res$dif.items[6],NA),
dif.detect.7=ifelse(length(res$dif.items)>=7,res$dif.items[7],NA),
dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA),
dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA),
dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA),
dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA),
dif.detect.unif.5=ifelse(length(res$uniform)>=5,res$uniform[5],NA),
dif.detect.unif.6=ifelse(length(res$uniform)>=6,res$uniform[6],NA),
dif.detect.unif.7=ifelse(length(res$uniform)>=7,res$uniform[7],NA),
N=N,
nbdif=ifelse(scen<=4,0,ifelse(scen<=16,2,3)),
true.dif.1=ifelse(scen<=4,NA,unique(dat[dat$replication==k,]$dif1)),
true.dif.2=ifelse(scen<=4,NA,unique(dat[dat$replication==k,]$dif2)),
true.dif.3=ifelse(scen<=16,NA,unique(dat[dat$replication==k,]$dif3)))
df_res <- rbind(df_res,df_res2)
}
}
else if (scen%in%c(1,2,5:12)) {
res <- resali(df=dat[dat$replication==1,],items = seq(1,4),group=grp,verbose=FALSE)
df_res <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA),
dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA),
dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA),
dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA),
dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA),
dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA),
dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA),
dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA),
N=N,
nbdif=ifelse(scen<=4,0,ifelse(scen<=8,1,2)),
true.dif.1=ifelse(scen<=4,NA,unique(dat[dat$replication==1,]$dif1)),
true.dif.2=ifelse(scen<=8,NA,unique(dat[dat$replication==1,]$dif2))
)
for (k in 2:1000) {
if (k%%100==0) {
cat(paste0('N=',k,'/1000\n'))
}
res <- resali(df=dat[dat$replication==k,],items = seq(1,4),group=grp,verbose=FALSE)
df_res2 <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA),
dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA),
dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA),
dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA),
dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA),
dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA),
dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA),
dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA),
N=N,
nbdif=ifelse(scen<=4,0,ifelse(scen<=8,1,2)),
true.dif.1=ifelse(scen<=4,NA,unique(dat[dat$replication==k,]$dif1)),
true.dif.2=ifelse(scen<=8,NA,unique(dat[dat$replication==k,]$dif2)))
df_res <- rbind(df_res,df_res2)
}
}
return(df_res)
}
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)
for (r in results) {
cat(paste0(r,"\n"))
cat(paste0("-------------------------------------------","\n"))
write.csv(generate_resali(r,"TT"),paste0("/home/corentin/Documents/These/Recherche/Simulations/Analysis/RESALI/Detection/",r,".csv"))
cat(paste0("-------------------------------------------","\n"))
}
##############################################################################
#----------------------------------------------------------------------------#
####################### AGGREGATION DIF MATRICES RESALI ######################
#----------------------------------------------------------------------------#
##############################################################################
#### Create data.frame
results <- c(sapply(1:4,function(x) paste0(x,c('A','B','C','D','E'))),sapply(5:9,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results2 <- c(sapply(10:20,function(x) paste0(x,c('A','B','C','D','E','F','G'))))
results <- c(sapply(c(50,100,200,300),function(x) paste0(results,'_',x)))
results2 <- c(sapply(c(50,100,200,300),function(x) paste0(results2,'_',x)))
results <- sort(results)
results2 <- sort(results2)
results <- c(results,results2)
#### Compiler function
compile_simulation2_resali <- function(scenario) {
name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2)))
if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/resali-DIF/N50/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="100" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/resali-DIF/N100/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="200" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/resali-DIF/N200/',scenario,'_original.xls'))
}
if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300" & name>0) {
s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/Simulations/Analysis/resali-DIF/N300/',scenario,'_original.xls'))
}
J <- max(which(sapply(1:7,function(x) paste0('item',x) %in% colnames(s) | paste0('item',x,'_1') %in% colnames(s))))
M <- 1+sum(sapply(1:3,function(x) paste0('item1_',x) %in% colnames(s) ))
if (M==1) {M <- 2}
nb.dif <- max(which(sapply(1:3,function(x) paste0('dif',x) %in% colnames(s) | paste0('dif',x,'_1') %in% colnames(s))))
if (J==4) {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3)
)
}
} else {
if (M==2) {
a <- data.frame(m.item1=mean(s$item1),m.item2=mean(s$item2),m.item3=mean(s$item3),m.item4=mean(s$item4),
m.item5=mean(s$item5),m.item6=mean(s$item6),m.item7=mean(s$item7))
} else {
a <- data.frame(m.item1_1=mean(s$item1_1),m.item1_2=mean(s$item1_2),m.item1_3=mean(s$item1_3),
m.item2_1=mean(s$item2_1),m.item2_2=mean(s$item2_2),m.item2_3=mean(s$item2_3),
m.item3_1=mean(s$item3_1),m.item3_2=mean(s$item3_2),m.item3_3=mean(s$item3_3),
m.item4_1=mean(s$item4_1),m.item4_2=mean(s$item4_2),m.item4_3=mean(s$item4_3),
m.item5_1=mean(s$item5_1),m.item5_2=mean(s$item5_2),m.item5_3=mean(s$item5_3),
m.item6_1=mean(s$item6_1),m.item6_2=mean(s$item6_2),m.item6_3=mean(s$item6_3),
m.item7_1=mean(s$item7_1),m.item7_2=mean(s$item7_2),m.item7_3=mean(s$item7_3)
)
}
}
N <- ifelse(substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50","50",substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario)))
zz <- ifelse(N=="50",substr(scenario,start=0,stop=nchar(scenario)-3),substr(scenario,start=0,stop=nchar(scenario)-4))
eff.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'eff.size'])
dif.size <- unique(res.dat[res.dat$scenario==zz & res.dat$N==N,'dif.size'])
b <- data.frame(scenario=zz,
scenario.type=substr(zz,start=nchar(zz),stop=nchar(zz)),
N=N,
J=J,
M=M,
eff.size=eff.size,
nb.dif=nb.dif,
dif.size=dif.size
)
true.value.in.ci <- eff.size <= s$beta+1.96*s$se_beta & eff.size >= s$beta-1.96*s$se_beta
beta.same.sign.truebeta.p <- ifelse(rep(eff.size,nrow(s))==0,NA,(rep(eff.size,nrow(s))/s$beta)>0)
num.reject <- which((s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0)
z <- data.frame(m.beta=mean(s$beta),
se.empirical.beta=sd(s$beta),
se.analytical.beta=mean(s$se_beta),
m.low.ci.beta=mean(s$beta-1.96*s$se_beta),
m.high.ci.beta=mean(s$beta+1.96*s$se_beta),
true.value.in.ci.p=mean(true.value.in.ci),
h0.rejected.p=mean( (s$beta-1.96*s$se_beta)>0 | (s$beta+1.96*s$se_beta)<0 ),
beta.same.sign.truebeta.p=mean(beta.same.sign.truebeta.p),
beta.same.sign.truebeta.signif.p=mean(beta.same.sign.truebeta.p[num.reject])
)
d <- cbind(b,a,z)
d$prop.
return(d)
}
#### Compiled results
res.dat.dif.resali <- compile_simulation2_resali('1A_100')
for (x in results[seq(2,length(results))]) {
y <- compile_simulation2_resali(x)
res.dat.dif.resali <- bind_rows(res.dat.dif.resali,y)
}
res.dat.dif.resali$bias <- res.dat.dif.resali$eff.size-res.dat.dif.resali$m.beta
##############################################################################
#----------------------------------------------------------------------------#
################################## RASCHPOWER ################################
#----------------------------------------------------------------------------#
##############################################################################
###### Puissance théorique
res.dat$theoretical.power <- 0
### Scénarios N=100
## Scénarios J=4 / M=2
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'A') & res.dat$N==100,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'B') & res.dat$N==100,]$theoretical.power <- 0.1543
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'C') & res.dat$N==100,]$theoretical.power <- 0.1543
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'D') & res.dat$N==100,]$theoretical.power <- 0.4627
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'E') & res.dat$N==100,]$theoretical.power <- 0.4627
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'F') & res.dat$N==100,]$theoretical.power <- 0.1543
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'G') & res.dat$N==100,]$theoretical.power <- 0.4627
res.dat[res.dat$scenario %in% paste0(1,'C') & res.dat$N==100,]$theoretical.power <- 0.4627
res.dat[res.dat$scenario %in% paste0(1,'D') & res.dat$N==100,]$theoretical.power <- 0.1543
res.dat[res.dat$scenario %in% paste0(1,'E') & res.dat$N==100,]$theoretical.power <- 0.4627
## Scénarios J=4 / M=4
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==100,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==100,]$theoretical.power <- 0.2177
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==100,]$theoretical.power <- 0.2177
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==100,]$theoretical.power <- 0.6586
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==100,]$theoretical.power <- 0.6586
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'F') & res.dat$N==100,]$theoretical.power <- 0.2177
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'G') & res.dat$N==100,]$theoretical.power <- 0.6586
res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==100,]$theoretical.power <- 0.6586
res.dat[res.dat$scenario %in% paste0(2,'D') & res.dat$N==100,]$theoretical.power <- 0.2177
res.dat[res.dat$scenario %in% paste0(2,'E') & res.dat$N==100,]$theoretical.power <- 0.6586
## Scénarios J=7 / M=2
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'A') & res.dat$N==100,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'B') & res.dat$N==100,]$theoretical.power <- 0.1870
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'C') & res.dat$N==100,]$theoretical.power <- 0.1870
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'D') & res.dat$N==100,]$theoretical.power <- 0.5666
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'E') & res.dat$N==100,]$theoretical.power <- 0.5666
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'F') & res.dat$N==100,]$theoretical.power <- 0.1870
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'G') & res.dat$N==100,]$theoretical.power <- 0.5666
res.dat[res.dat$scenario %in% paste0(3,'C') & res.dat$N==100,]$theoretical.power <- 0.5666
res.dat[res.dat$scenario %in% paste0(3,'D') & res.dat$N==100,]$theoretical.power <- 0.1870
res.dat[res.dat$scenario %in% paste0(3,'E') & res.dat$N==100,]$theoretical.power <- 0.5666
## Scénarios J=7 / M=4
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==100,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==100,]$theoretical.power <- 0.2450
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==100,]$theoretical.power <- 0.2450
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==100,]$theoretical.power <- 0.7136
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==100,]$theoretical.power <- 0.7136
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'F') & res.dat$N==100,]$theoretical.power <- 0.2450
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'G') & res.dat$N==100,]$theoretical.power <- 0.7136
res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==100,]$theoretical.power <- 0.7136
res.dat[res.dat$scenario %in% paste0(4,'D') & res.dat$N==100,]$theoretical.power <- 0.2450
res.dat[res.dat$scenario %in% paste0(4,'E') & res.dat$N==100,]$theoretical.power <- 0.7136
### Scénarios N=200
## Scénarios J=4 / M=2
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'A') & res.dat$N==200,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'B') & res.dat$N==200,]$theoretical.power <- 0.2618
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'C') & res.dat$N==200,]$theoretical.power <- 0.2618
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'D') & res.dat$N==200,]$theoretical.power <- 0.7507
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'E') & res.dat$N==200,]$theoretical.power <- 0.7507
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'F') & res.dat$N==200,]$theoretical.power <- 0.2618
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'G') & res.dat$N==200,]$theoretical.power <- 0.7507
res.dat[res.dat$scenario %in% paste0(1,'C') & res.dat$N==200,]$theoretical.power <- 0.7507
res.dat[res.dat$scenario %in% paste0(1,'D') & res.dat$N==200,]$theoretical.power <- 0.2618
res.dat[res.dat$scenario %in% paste0(1,'E') & res.dat$N==200,]$theoretical.power <- 0.7507
## Scénarios J=4 / M=4
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==200,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==200,]$theoretical.power <- 0.3875
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==200,]$theoretical.power <- 0.3875
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==200,]$theoretical.power <- 0.9161
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==200,]$theoretical.power <- 0.9161
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'F') & res.dat$N==200,]$theoretical.power <- 0.3875
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'G') & res.dat$N==200,]$theoretical.power <- 0.9161
res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==200,]$theoretical.power <- 0.9161
res.dat[res.dat$scenario %in% paste0(2,'D') & res.dat$N==200,]$theoretical.power <- 0.3875
res.dat[res.dat$scenario %in% paste0(2,'E') & res.dat$N==200,]$theoretical.power <- 0.9161
## Scénarios J=7 / M=2
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'A') & res.dat$N==200,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'B') & res.dat$N==200,]$theoretical.power <- 0.3258
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'C') & res.dat$N==200,]$theoretical.power <- 0.3258
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'D') & res.dat$N==200,]$theoretical.power <- 0.8538
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'E') & res.dat$N==200,]$theoretical.power <- 0.8538
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'F') & res.dat$N==200,]$theoretical.power <- 0.3258
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'G') & res.dat$N==200,]$theoretical.power <- 0.8538
res.dat[res.dat$scenario %in% paste0(3,'C') & res.dat$N==200,]$theoretical.power <- 0.8538
res.dat[res.dat$scenario %in% paste0(3,'D') & res.dat$N==200,]$theoretical.power <- 0.3258
res.dat[res.dat$scenario %in% paste0(3,'E') & res.dat$N==200,]$theoretical.power <- 0.8538
## Scénarios J=7 / M=4
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==200,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==200,]$theoretical.power <- 0.4321
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==200,]$theoretical.power <- 0.4321
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==200,]$theoretical.power <- 0.9471
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==200,]$theoretical.power <- 0.9471
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'F') & res.dat$N==200,]$theoretical.power <- 0.4321
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'G') & res.dat$N==200,]$theoretical.power <- 0.9471
res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==200,]$theoretical.power <- 0.9471
res.dat[res.dat$scenario %in% paste0(4,'D') & res.dat$N==200,]$theoretical.power <- 0.4321
res.dat[res.dat$scenario %in% paste0(4,'E') & res.dat$N==200,]$theoretical.power <- 0.9471
### Scénarios N=300
## Scénarios J=4 / M=2
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'A') & res.dat$N==300,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'B') & res.dat$N==300,]$theoretical.power <- 0.3660
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'C') & res.dat$N==300,]$theoretical.power <- 0.3660
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'D') & res.dat$N==300,]$theoretical.power <- 0.8981
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'E') & res.dat$N==300,]$theoretical.power <- 0.8981
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'F') & res.dat$N==300,]$theoretical.power <- 0.3660
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'G') & res.dat$N==300,]$theoretical.power <- 0.8981
res.dat[res.dat$scenario %in% paste0(1,'C') & res.dat$N==300,]$theoretical.power <- 0.8981
res.dat[res.dat$scenario %in% paste0(1,'D') & res.dat$N==300,]$theoretical.power <- 0.3660
res.dat[res.dat$scenario %in% paste0(1,'E') & res.dat$N==300,]$theoretical.power <- 0.8981
## Scénarios J=4 / M=4
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==300,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==300,]$theoretical.power <- 0.5373
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==300,]$theoretical.power <- 0.5373
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==300,]$theoretical.power <- 0.9834
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==300,]$theoretical.power <- 0.9834
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'F') & res.dat$N==300,]$theoretical.power <- 0.5373
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'G') & res.dat$N==300,]$theoretical.power <- 0.9834
res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==300,]$theoretical.power <- 0.9834
res.dat[res.dat$scenario %in% paste0(2,'D') & res.dat$N==300,]$theoretical.power <- 0.5373
res.dat[res.dat$scenario %in% paste0(2,'E') & res.dat$N==300,]$theoretical.power <- 0.9834
## Scénarios J=7 / M=2
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'A') & res.dat$N==300,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'B') & res.dat$N==300,]$theoretical.power <- 0.4550
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'C') & res.dat$N==300,]$theoretical.power <- 0.4550
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'D') & res.dat$N==300,]$theoretical.power <- 0.9584
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'E') & res.dat$N==300,]$theoretical.power <- 0.9584
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'F') & res.dat$N==300,]$theoretical.power <- 0.4550
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'G') & res.dat$N==300,]$theoretical.power <- 0.9584
res.dat[res.dat$scenario %in% paste0(3,'C') & res.dat$N==300,]$theoretical.power <- 0.9584
res.dat[res.dat$scenario %in% paste0(3,'D') & res.dat$N==300,]$theoretical.power <- 0.4550
res.dat[res.dat$scenario %in% paste0(3,'E') & res.dat$N==300,]$theoretical.power <- 0.9584
## Scénarios J=7 / M=4
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==300,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==300,]$theoretical.power <- 0.5907
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==300,]$theoretical.power <- 0.5907
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==300,]$theoretical.power <- 0.9919
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==300,]$theoretical.power <- 0.9919
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'F') & res.dat$N==300,]$theoretical.power <- 0.5907
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'G') & res.dat$N==300,]$theoretical.power <- 0.9919
res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==300,]$theoretical.power <- 0.9919
res.dat[res.dat$scenario %in% paste0(4,'D') & res.dat$N==300,]$theoretical.power <- 0.5907
res.dat[res.dat$scenario %in% paste0(4,'E') & res.dat$N==300,]$theoretical.power <- 0.9919
### Scénarios N=50
## Scénarios J=4 / M=2
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'A') & res.dat$N==50,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(1,5,7,9,11),'B') & res.dat$N==50,]$theoretical.power <- 0.1013
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'C') & res.dat$N==50,]$theoretical.power <- 0.1013
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'D') & res.dat$N==50,]$theoretical.power <- 0.2615
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'E') & res.dat$N==50,]$theoretical.power <- 0.2615
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'F') & res.dat$N==50,]$theoretical.power <- 0.1013
res.dat[res.dat$scenario %in% paste0(c(5,7,9,11),'G') & res.dat$N==50,]$theoretical.power <- 0.2615
res.dat[res.dat$scenario %in% paste0(1,'C') & res.dat$N==50,]$theoretical.power <- 0.2615
res.dat[res.dat$scenario %in% paste0(1,'D') & res.dat$N==50,]$theoretical.power <- 0.1013
res.dat[res.dat$scenario %in% paste0(1,'E') & res.dat$N==50,]$theoretical.power <- 0.2615
## Scénarios J=4 / M=4
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'A') & res.dat$N==50,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(2,6,8,10,12),'B') & res.dat$N==50,]$theoretical.power <- 0.1339
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'C') & res.dat$N==50,]$theoretical.power <- 0.1339
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'D') & res.dat$N==50,]$theoretical.power <- 0.3863
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'E') & res.dat$N==50,]$theoretical.power <- 0.3863
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'F') & res.dat$N==50,]$theoretical.power <- 0.1339
res.dat[res.dat$scenario %in% paste0(c(6,8,10,12),'G') & res.dat$N==50,]$theoretical.power <- 0.3863
res.dat[res.dat$scenario %in% paste0(2,'C') & res.dat$N==50,]$theoretical.power <- 0.3863
res.dat[res.dat$scenario %in% paste0(2,'D') & res.dat$N==50,]$theoretical.power <- 0.1339
res.dat[res.dat$scenario %in% paste0(2,'E') & res.dat$N==50,]$theoretical.power <- 0.3863
## Scénarios J=7 / M=2
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'A') & res.dat$N==50,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(3,13,15,17,19),'B') & res.dat$N==50,]$theoretical.power <- 0.1171
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'C') & res.dat$N==50,]$theoretical.power <- 0.1171
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'D') & res.dat$N==50,]$theoretical.power <- 0.3236
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'E') & res.dat$N==50,]$theoretical.power <- 0.3236
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'F') & res.dat$N==50,]$theoretical.power <- 0.1171
res.dat[res.dat$scenario %in% paste0(c(13,15,17,19),'G') & res.dat$N==50,]$theoretical.power <- 0.3236
res.dat[res.dat$scenario %in% paste0(3,'C') & res.dat$N==50,]$theoretical.power <- 0.3236
res.dat[res.dat$scenario %in% paste0(3,'D') & res.dat$N==50,]$theoretical.power <- 0.1171
res.dat[res.dat$scenario %in% paste0(3,'E') & res.dat$N==50,]$theoretical.power <- 0.3236
## Scénarios J=7 / M=4
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'A') & res.dat$N==50,]$theoretical.power <- 0.05
res.dat[res.dat$scenario %in% paste0(c(4,14,16,18,20),'B') & res.dat$N==50,]$theoretical.power <- 0.1448
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'C') & res.dat$N==50,]$theoretical.power <- 0.1448
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'D') & res.dat$N==50,]$theoretical.power <- 0.4328
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'E') & res.dat$N==50,]$theoretical.power <- 0.4328
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'F') & res.dat$N==50,]$theoretical.power <- 0.1448
res.dat[res.dat$scenario %in% paste0(c(14,16,18,20),'G') & res.dat$N==50,]$theoretical.power <- 0.4328
res.dat[res.dat$scenario %in% paste0(4,'C') & res.dat$N==50,]$theoretical.power <- 0.4328
res.dat[res.dat$scenario %in% paste0(4,'D') & res.dat$N==50,]$theoretical.power <- 0.1448
res.dat[res.dat$scenario %in% paste0(4,'E') & res.dat$N==50,]$theoretical.power <- 0.4328
### DIF scenarios
res.dat.dif$theoretical.power <- res.dat[81:nrow(res.dat),]$theoretical.power
Loading…
Cancel
Save