Computed theoretical power for N=100 and N=200 scenarios
This commit is contained in:
95
Modules/ado/plus/r/reoprob.hlp
Normal file
95
Modules/ado/plus/r/reoprob.hlp
Normal file
@ -0,0 +1,95 @@
|
||||
.-
|
||||
help for ^reoprob^ (STB-59: sg158; STB-61: sg158.1)
|
||||
.-
|
||||
|
||||
Random-effects ordered probit
|
||||
-----------------------------
|
||||
|
||||
^reoprob^ depvar varlist [^if^ exp] [^in^ range] ^,^
|
||||
[ ^i(^varname^)^ ^q^uadrat^(^#^)^ ^l^evel^(^#^)^ maximize_options ]
|
||||
|
||||
This command shares the features of all estimation commands; see help @est@.
|
||||
|
||||
To reset problem-size limits, see help @matsize@.
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
^reoprob^ estimates a random-effects ordered probit model for panel datasets
|
||||
using maximum likelihood estimation. The likelihood for each unit is
|
||||
approximated by Gauss-Hermite quadrature.
|
||||
|
||||
|
||||
Options
|
||||
-------
|
||||
|
||||
^i(^varname^)^ specifies the variable corresponding to an independent unit
|
||||
(e.g., a subject id). ^i(^varname^)^ is not optional.
|
||||
|
||||
^quadrat(^#^)^ specifies the number of points to use for Gaussian-Hermite
|
||||
quadrature. It is optional, and the default is 12. Increasing this value
|
||||
improves accuracy, but also increases computation time. Computation time
|
||||
is roughly proportional to its value.
|
||||
|
||||
^level(^#^)^ specifies the confidence level, in percent, for confidence
|
||||
intervals. The default is ^level(95)^ or as set by ^set level^.
|
||||
|
||||
maximize_options controls the maximization process and the display of
|
||||
information; see [R] maximize. ^nolog^ suppresses the display of the
|
||||
likelihood iterations. Use the ^trace^ option to view parameter
|
||||
convergence. The ^ltol(^#^)^ and ^tol(^#^)^ option can be used to loosen
|
||||
the convergence criterion (respectively 1e-7 and 1e-6 by default) during
|
||||
specification searches. ^iter(^#^)^ specifies the maximum number of
|
||||
iterations.
|
||||
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
. ^reoprob y x, i(id)^
|
||||
. ^reoprob y x^
|
||||
. ^reoprob y x, i(id) quad(24) nolog^
|
||||
. ^reoprob y x, i(id) trace^
|
||||
. ^reoprob^
|
||||
|
||||
|
||||
Method
|
||||
------
|
||||
|
||||
^reoprob^ uses the d1 method (analytic first derviatives) of Stata's ^ml^
|
||||
commands. See Butler and Moffitt (1982) for details about using Gauss-Hermite
|
||||
quadrature to approximate such integrals. Also see Green (2000) for
|
||||
information on how to estimate a basic ordered probit model.
|
||||
|
||||
|
||||
Author
|
||||
------
|
||||
|
||||
Guillaume R. Frechette
|
||||
Ohio State University
|
||||
Department of Economics
|
||||
410 Arps Hall
|
||||
1945 North High Street
|
||||
Columbus, OH 43210-1172
|
||||
Tel: (614) 688-4140
|
||||
Fax: (614) 292-4192
|
||||
e-mail: frechette.6@@osu.edu
|
||||
http://www.econ.ohio-state.edu/frechette/
|
||||
|
||||
|
||||
Reference
|
||||
---------
|
||||
|
||||
Butler, J.S. and R. Moffitt. 1982. A computationally efficient
|
||||
quadrature procedure for the one-factor multinomial probit model.
|
||||
Econometrica 50: 761-764.
|
||||
|
||||
Green, W. H. 2000. Econometric Analysis. Prentice Hall, New Jersey.
|
||||
pp. 875-878.
|
||||
|
||||
Also see
|
||||
--------
|
||||
|
||||
Manual: ^[R] xt, [R] xtprobit, [R] maximize, [R] oprobit^
|
||||
On-line: help for @xt@, @xtreg@
|
Reference in New Issue
Block a user