You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
3.4 KiB
R
89 lines
3.4 KiB
R
8 months ago
|
##############################################################################
|
||
|
#----------------------------------------------------------------------------#
|
||
|
############################# DATA TRANSFORMATION ############################
|
||
|
#----------------------------------------------------------------------------#
|
||
|
##############################################################################
|
||
|
|
||
|
# Import ROSALI and RESALI
|
||
|
|
||
|
ros_mdc <- read_excel("/home/corentin/Documents/These/Recherche/Simulations/Analysis/ROSALI-DIF/N300/6A_300_original.xls")
|
||
|
res_mdc <- read_excel("/home/corentin/Documents/These/Recherche/Simulations/Analysis/RESALI/Results/N300/6A_300_original.xls")
|
||
|
|
||
|
|
||
|
# Perform MH
|
||
|
|
||
|
library(difR)
|
||
|
|
||
|
dat_mh <- read.csv('/home/corentin/Documents/These/Recherche/Simulations/Data/DIF/N300/scenario_6A_300.csv')[,c("item1","item2","item3","item4",'replication',"TT")]
|
||
|
|
||
|
det_mh <- c()
|
||
|
for (k in 1:1000) {
|
||
|
if (k%%1000==0) {
|
||
|
cat(paste0(k,'/1000\n'))
|
||
|
}
|
||
|
dat_mh_temp <- dat_mh[dat_mh$replication==k,c("item1",'item2',"item3","item4",'TT')]
|
||
|
aa <- difMH(Data=dat_mh_temp,group = "TT",focal.name = 0,exact=F)
|
||
|
det_mh <- c(det_mh,1:4 %in% aa$DIFitems)
|
||
|
}
|
||
|
|
||
|
# Create 1 line per item per replication in df
|
||
|
library(tidyr)
|
||
|
|
||
|
da <- as.data.frame(sapply(1:4, function(k) sapply(1:1000,function(x) k%in%ros_mdc[x,paste0("dif_detect_",1:4)])))
|
||
|
db <- as.data.frame(sapply(1:4, function(k) sapply(1:1000,function(x) k%in%res_mdc[x,paste0("dif_detect_",1:4)])))
|
||
|
dc <- as.data.frame(sapply(1:4, function(k) sapply(1:1000,function(x) k%in%res_mdc[x,paste0("real_dif_",1)])))
|
||
|
|
||
|
data_mdca <- data.frame(rosali=da)
|
||
|
data_mdca <- pivot_longer(data_mdca,cols=1:4)
|
||
|
data_mdcb <- data.frame(resali=db)
|
||
|
data_mdcb <- pivot_longer(data_mdcb,cols=1:4)
|
||
|
data_mdcc <- data.frame(real=dc)
|
||
|
data_mdcc <- pivot_longer(data_mdcc,cols=1:4)
|
||
|
|
||
|
data_mdc <- cbind(data_mdca,data_mdcb,data_mdcc)[,c(2,4,6)]
|
||
|
colnames(data_mdc) <- c("rosali","resali","real")
|
||
|
|
||
|
make_repl <- function(kk) {
|
||
|
b <- c()
|
||
|
for (k in kk) {
|
||
|
a <- rep(k,4)
|
||
|
b <- c(b,a)
|
||
|
}
|
||
|
return(b)
|
||
|
}
|
||
|
|
||
|
data_mdc$mh <- det_mh
|
||
|
|
||
|
data_mdc$replication <- make_repl(1:1000)
|
||
|
|
||
|
|
||
|
##############################################################################
|
||
|
#----------------------------------------------------------------------------#
|
||
|
########################### FIT DIF DETECTION MODEL ##########################
|
||
|
#----------------------------------------------------------------------------#
|
||
|
##############################################################################
|
||
|
|
||
|
# Fit TAN model
|
||
|
|
||
|
|
||
|
|
||
|
# Fit logistic model, stratified on replication
|
||
|
|
||
|
mod_glm <- glm(formula = real~rosali+resali,data = data_mdc[1:2000,],family = binomial())
|
||
|
data_valid <- data_mdc[2000:4000,]
|
||
|
data_valid$predict <- predict(mod_glm,newdata = data_valid)
|
||
|
roc_c <- pROC::roc(response=data_valid$real,predictor=data_valid$predict)
|
||
|
|
||
|
data_mdc$logit_pred <- predict(mod_glm,newdata = data_mdc)>=-0.6275167
|
||
|
|
||
|
perf_moreflex <- c()
|
||
|
for (k in 1:1000) {
|
||
|
dattt <- data_mdc[4*(k-1)+1:4,]
|
||
|
perf_moreflex <- c(perf_moreflex,all(rownames(dattt[dattt$real==TRUE,])%in%rownames(dattt[dattt$logit_pred==TRUE,])))
|
||
|
}
|
||
|
|
||
|
##############################################################################
|
||
|
#----------------------------------------------------------------------------#
|
||
|
######################## FIT UNIFORMITY DETECTION MODEL ######################
|
||
|
#----------------------------------------------------------------------------#
|
||
|
##############################################################################
|