You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

457 lines
14 KiB
Plaintext

*! version 1.1.0 PR 30aug2005.
*
* Recent history of uvis
* 1.1.0 03aug2005 Replace -draw- option with -match-. Default becomes draw.
* With prediction matching, randomly sort observations with identical predictions.
* Order variables in chained equations in order of increasing missingness.
* 1.0.4 21jun2005 Add sort, stable to enable reproducibility imputations with given seed
*
program define uvis, rclass sortpreserve
version 8
gettoken cmd 0 : 0
if substr("`cmd'",1,3)=="reg" {
local cmd regress
}
local normal=("`cmd'"=="regress")|("`cmd'"=="rreg")
local binary=("`cmd'"=="logit")|("`cmd'"=="logistic")
local catcmd=("`cmd'"=="mlogit")|("`cmd'"=="ologit")
if !`normal' & !`binary' & !`catcmd' {
di in red "invalid or unrecognised command, `cmd'"
exit 198
}
syntax varlist(min=2 numeric) [if] [in] [aweight fweight pweight iweight] , Gen(string) /*
*/ [ noCONStant Delta(real 0) BOot MAtch REPLACE SEed(int 0) * ]
if "`replace'"=="" {
confirm new var `gen'
}
if "`match'"=="match" {
di as text "[imputing by prediction matching" _cont
}
else di as text "[imputing by drawing from conditional distribution" _cont
if "`boot'"=="" {
di as text " without bootstrap]"
}
else di as text " with bootstrap]"
if "`constant'"=="noconstant" {
local options "`options' nocons"
}
gettoken y xvars : varlist
tempvar touse
quietly {
marksample touse, novarlist
markout `touse' `xvars' /* note: does not include `y' */
if `seed'!=0 {
set seed `seed'
}
* Deal with weights
frac_wgt `"`exp'"' `touse' `"`weight'"'
local wgt `r(wgt)'
* Code types of missings: 1=non-missing y, 2=missing y, 3=other missing
tempvar obstype yimp
gen byte `obstype'=1*(`touse'==1 & !missing(`y')) /*
*/ +2*(`touse'==1 & missing(`y')) /*
*/ +3*(`touse'==0)
count if `obstype'==1
local nobs=r(N)
count if `obstype'==2
local nmis=r(N)
local type: type `y'
gen `type' `yimp'=.
* Fit imputation model
`cmd' `y' `xvars' `wgt', `options'
tempname b e V chol bstar
tempvar xb u
matrix `b'=e(b)
matrix `e'=e(b)
matrix `V'=e(V)
local colsofb=colsof(`b')
* Check for zeroes on the diagonal of V and replace them with 1.
* Otherwise this makes the matrix non-positive definite.
* Occurs when e.g. logit drops variables, giving zero variances.
* !! Is this safe to do?
if diag0cnt(`V')>0 {
forvalues j=1/`colsofb' {
if `V'[`j',`j']==0 {
matrix `V'[`j',`j']=1
}
}
}
matrix `chol'=cholesky(`V')
if `catcmd' {
tempname cat
local nclass=e(k_cat) /* number of classes in (ordered) categoric variable */
matrix `cat'=e(cat) /* row vector giving actual category values */
local cuts=`nclass'-1
}
* Draw beta, and if necessary rmse, for proper imputation
if `normal' {
* draw rmse
local rmse=e(rmse)
local df=e(df_r)
local chi2=2*invgammap(`df'/2,uniform())
local rmsestar=`rmse'*sqrt(`df'/`chi2')
matrix `chol'=`chol'*sqrt(`df'/`chi2')
}
* draw beta
forvalues i=1/`colsofb' {
matrix `e'[1,`i']=invnorm(uniform())
}
matrix `bstar'=`b'+`e'*`chol''
if "`boot'"=="" {
* Based on Ian White's code to implement van Buuren et al (1999).
* draw y
gen `u'=uniform()
if `normal' | `binary' {
* in normal or binary case, impute by sampling conditional distribution
* or by prediction matching
if "`match'"=="match" {
* prediction matching
tempvar etaobs etamis
matrix score `etaobs'=`b' if `obstype'==1
matrix score `etamis'=`bstar' if `obstype'==2
* Include non-response location shift, delta.
if `delta'!=0 {
replace `etamis'=`etamis'+`delta'
}
match_normal `obstype' `nobs' `nmis' `etaobs' `etamis' `yimp' `y'
}
else {
* sampling conditional distribution
matrix score `xb'=`bstar' if `touse'
if `normal' {
replace `yimp'=`xb'+`rmsestar'*invnorm(`u')
}
else replace `yimp'=`u'<1/(1+exp(-`xb')) if !missing(`xb')
}
}
else { /* catcmd */
if "`match'"=="match" { // prediction matching
* predict class-specific probabilities and convert to logits
if "`cmd'"=="ologit" {
* Predict index independent of cutpoints
* (note use of forcezero option to circumvent missing _cut* vars)
matrix score `xb'=`b' if `touse', forcezero
* predict cumulative probabilities for obs data and hence logits of class probs
forvalues k=1/`nclass' {
tempvar etaobs`k' etamis`k'
if `k'==`nclass' {
gen `etaobs`nclass''=log((1-`p`cuts'')/`p`cuts'') if `obstype'==1
}
else {
tempvar p`k'
local cutpt=`b'[1, `k'+`colsofb'-`cuts']
* 1/(1+exp(-... is probability of being in category 1 or 2 or ... k
gen `p`k''=1/(1+exp(-(`cutpt'-`xb')))
if `k'==1 {
gen `etaobs`k''=log(`p`k''/(1-`p`k'')) if `obstype'==1
}
else {
local k1=`k'-1
gen `etaobs`k''=log((`p`k''-`p`k1'')/(1-(`p`k''-`p`k1''))) /*
*/ if `obstype'==1
}
}
}
drop `xb'
matrix score `xb'=`bstar' if `touse', forcezero
* predict cumulative probabilities for missing data and hence logits of class probs
forvalues k=1/`nclass' {
if `k'==`nclass' {
gen `etamis`nclass''=log((1-`p`cuts'')/`p`cuts'') if `obstype'==2
}
else {
local cutpt=`bstar'[1, `k'+`colsofb'-`cuts']
replace `p`k''=1/(1+exp(-(`cutpt'-`xb')))
if `k'==1 {
gen `etamis`k''=log(`p`k''/(1-`p`k'')) if `obstype'==2
}
else {
local k1=`k'-1
gen `etamis`k''=log((`p`k''-`p`k1'')/(1-(`p`k''-`p`k1''))) /*
*/ if `obstype'==2
}
}
}
}
else { /* mlogit */
* predict cumulative probabilities for obs data and hence logits of class probs
* care needed dealing with different possible base categories
tempvar sumexp
local basecat=e(basecat) /* actual basecategory chosen by Stata */
gen `sumexp'=0 if `touse'
forvalues k=1/`nclass' {
tempvar etaobs`k' etamis`k' xb`k'
local thiscat=`cat'[1,`k']
if `thiscat'==`basecat' {
gen `xb`k''=0 if `touse'
}
else matrix score `xb`k''=`b' if `touse', equation(`thiscat')
replace `sumexp'=`sumexp' + exp(`xb`k'')
}
forvalues k=1/`nclass' {
* formula for logit of class prob derived from Pk in Stata mlogit entry
gen `etaobs`k''=`xb`k''-log(`sumexp'-exp(`xb`k'')) if `obstype'==1
}
* same for missing obs
replace `sumexp'=0
forvalues k=1/`nclass' {
cap drop `xb`k''
local thiscat=`cat'[1,`k']
if `thiscat'==`basecat' {
gen `xb`k''=0 if `touse'
}
else matrix score `xb`k''=`bstar' if `touse', equation(`thiscat')
replace `sumexp'=`sumexp' + exp(`xb`k'')
}
forvalues k=1/`nclass' {
* formula for logit of class prob derived from Pk in Stata mlogit entry
gen `etamis`k''=`xb`k''-log(`sumexp'-exp(`xb`k'')) if `obstype'==2
}
}
* match
sort `obstype', stable
tempvar order distance
gen `distance'=.
gen long `order'=_n
* For each missing obs j, find index of obs whose etaobs is closest to prediction [j].
forvalues i=1/`nmis' {
local j=`i'+`nobs'
* calc summed absolute distances between etamis* and etaobs*
replace `distance'=0 in 1/`nobs'
forvalues k=1/`nclass' {
replace `distance'=`distance'+abs(`etamis`k''[`j']-`etaobs`k'') in 1/`nobs'
}
* Find index of smallest distance between etamis* and etaobs*
sort `distance'
local index=`order'[1]
* restore correct order
sort `order'
replace `yimp'=`y'[`index'] in `j'
}
}
else { // draw
* sampling conditional distribution
replace `yimp'=`cat'[1,1]
if "`cmd'"=="ologit" {
* Predict index independent of cutpoints
* (note use of forcezero option to circumvent missing _cut* vars)
matrix score `xb'=`bstar' if `touse', forcezero
forvalues k=1/`cuts' {
* 1/(1+exp(-... is probability of being in category 1 or 2 or ... k
local cutpt=`bstar'[1, `k'+`colsofb'-`cuts']
replace `yimp'=`cat'[1,`k'+1] if `u'>1/(1+exp(-(`cutpt'-`xb')))
}
}
else { /* mlogit */
* care needed dealing with different possible base categories
tempvar cusump sumexp
local basecat=e(basecat) /* actual basecategory chosen by Stata */
gen `sumexp'=0 if `touse'
forvalues i=1/`nclass' {
tempvar xb`i'
local thiscat=`cat'[1,`i']
if `thiscat'==`basecat' {
gen `xb`i''=0 if `touse'
}
else matrix score `xb`i''=`bstar' if `touse', equation(`thiscat')
replace `sumexp'=`sumexp' + exp(`xb`i'')
}
gen `cusump'=exp(`xb1')/`sumexp'
forvalues i=2/`nclass' {
replace `yimp'=`cat'[1,`i'] if `u'>`cusump'
replace `cusump'=`cusump'+exp(`xb`i'')/`sumexp'
replace `yimp'=. if missing(`xb`i'')
}
}
}
}
}
else {
* Bootstrap method
if "`match'"=="match" { /* match */
if `catcmd' {
* predict class-specific probabilities and convert to logits
forvalues k=1/`nclass' {
local outk=`cat'[1,`k']
tempvar etaobs`k' etamis`k'
predict `etaobs`k'' if `obstype'==1, outcome(`outk') /* probability */
replace `etaobs`k''=log(`etaobs`k''/(1-`etaobs`k'')) /* logit */
}
}
else { /* normal and binary cases */
tempvar etaobs etamis
predict `etaobs' if `obstype'==1, xb
}
}
* Bootstrap observed data
tempvar wt
gen double `wt'=.
bsample if `obstype'==1, weight(`wt')
if "`wgt'"!="" {
replace `wt' `exp'*`wt'
local w [`weight'=`wt']
}
else local w [fweight=`wt']
`cmd' `y' `xvars' `w', `options'
if `catcmd' {
if e(k_cat)<`nclass' {
di as error "cannot predict outcome for all classes in bootstrap sample;"
di as error "probably one or more classes has a low frequency in the original data:"
di as error "try amalgamating small classes of `y' and rerunning"
exit 303
}
}
if "`match'"=="match" {
if `catcmd' {
* predict class-specific probabilities and convert to logits
forvalues k=1/`nclass' {
local outk=`cat'[1,`k']
predict `etamis`k'' if `obstype'==2, outcome(`outk') /* probability */
replace `etamis`k''=log(`etamis`k''/(1-`etamis`k'')) /* logit */
}
* match
sort `obstype', stable
tempvar order distance
gen `distance'=.
gen long `order'=_n
* For each missing obs j, find index of obs whose etaobs is closest to prediction [j].
forvalues i=1/`nmis' {
local j=`i'+`nobs'
* calc summed absolute distances between etamis* and etaobs*
replace `distance'=0 in 1/`nobs'
forvalues k=1/`nclass' {
replace `distance'=`distance'+abs(`etamis`k''[`j']-`etaobs`k'') in 1/`nobs'
}
* Find index of smallest distance between etamis* and etaobs*
sort `distance'
local index=`order'[1]
* restore correct order
sort `order'
replace `yimp'=`y'[`index'] in `j'
}
}
else { /* normal and binary */
predict `etamis' if `obstype'==2, xb
* Include non-response location shift, delta.
if `delta'!=0 {
replace `etamis'=`etamis'+`delta'
}
match_normal `obstype' `nobs' `nmis' `etaobs' `etamis' `yimp' `y'
}
}
else { // draw
matrix `bstar'=e(b)
gen `u'=uniform()
if `normal' | `binary' {
matrix score `xb'=`bstar' if `touse'
if `normal' {
replace `yimp'=`xb'+e(rmse)*invnorm(`u')
}
else replace `yimp'=`u'<1/(1+exp(-`xb')) if !missing(`xb')
}
else { /* catcmd */
replace `yimp'=`cat'[1,1]
if "`cmd'"=="ologit" {
matrix score `xb'=`bstar' if `touse', forcezero
forvalues k=1/`cuts' {
* 1/(1+exp(-... is probability of being in category 1 or 2 or ... k
local cutpt=`bstar'[1, `k'+`colsofb'-`cuts']
replace `yimp'=`cat'[1,`k'+1] if `u'>1/(1+exp(-(`cutpt'-`xb')))
}
}
else { /* mlogit */
* care needed dealing with different possible base categories
tempvar cusump sumexp
local basecat=e(basecat) /* actual basecategory chosen by Stata */
gen `sumexp'=0 if `touse'
forvalues i=1/`nclass' {
tempvar xb`i'
local thiscat=`cat'[1,`i']
if `thiscat'==`basecat' {
gen `xb`i''=0 if `touse'
}
else matrix score `xb`i''=`bstar' if `touse', equation(`thiscat')
replace `sumexp'=`sumexp' + exp(`xb`i'')
}
gen `cusump'=exp(`xb1')/`sumexp'
forvalues i=2/`nclass' {
replace `yimp'=`cat'[1,`i'] if `u'>`cusump'
replace `cusump'=`cusump'+exp(`xb`i'')/`sumexp'
replace `yimp'=. if missing(`xb`i'')
}
}
}
}
}
cap drop `gen'
rename `yimp' `gen'
*replace `gen'=`y' if `obstype'==1
replace `gen'=`y' if !missing(`y')
lab var `gen' "imputed from `y'"
}
di _n in ye `nmis' in gr " missing observations on `y' imputed from " /*
*/ in ye `nobs' in gr " complete observations."
end
program define match_normal
* Prediction matching, normal or binary case.
args obstype nobs nmis etaobs etamis yimp y
quietly {
* For each missing obs j, find index of observation
* whose etaobs is closest to etamis[j].
tempvar sumgt
tempname etamisi
gen long `sumgt'=.
* Sort etaobs within obstype
sort `obstype' `etaobs', stable
forvalues i=1/`nmis' {
local j=`i'+`nobs'
scalar `etamisi'=`etamis'[`j']
replace `sumgt'=sum((`etamisi'>`etaobs')) in 1/`nobs'
sum `sumgt', meanonly
local j1=r(max)
if `j1'==0 {
local index 1
local direction 1
}
else if `j1'==`nobs' {
local index `nobs'
local direction -1
}
else {
local j2=`j1'+1
if (`etamisi'-`etaobs'[`j1'])<(`etaobs'[`j2']-`etamisi') {
local index `j1'
local direction -1
}
else {
local index `j2'
local direction 1
}
}
* In case of tied etaobs values, add random offset to index in the appropriate direction
count if `obstype'==1 & reldif(`etaobs', `etaobs'[`index'])<1e-7 // counts as equality
scalar count`i'=r(N)
if r(N)>1 {
local index=`index'+`direction'*int(uniform()*r(N))
}
replace `yimp'=`y'[`index'] in `j'
}
}
end