You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1744 lines
62 KiB
Plaintext

*! version 7.3.2 5october2005
************************************************************************************************************
* Raschtestv7: Rasch model, fit tests and graphical representations
* Corresponds to the version 7.3 of Raschtest (http://freeirt.free.fr) for Stata7
*
* Version 7.3.2 (Stata 7.0) : July 2, 2005 /*correction for the *genlt* option with *method(cml)**/
*
* Historic:
* Version 2.1 (2003-07-10): Jean-Benoit Hardouin
* Version 3.1 (2004-01-02) : Jean-Benoit Hardouin
* Version 7.1 (2005-03-30) : Jean-Benoit Hardouin
* Version 7.2.1 (2005-05-21) : Jean-Benoit Hardouin
* Version 7.3.1 (2005-07-02) : Jean-Benoit Hardouin
*
* Needed modules :
* gammasym version 2.1 (http://freeirt.free.fr)
* gausshermite version 1 (http://freeirt.free.fr)
* geekel2d version 4.2 (http://freeirt.free.fr)
* ghquadm (findit ghquadm)
* gllamm version 2.3.10 (ssc describe gllamm)
* gllapred version 2.3.2 (ssc describe gllapred)
* elapse (ssc describe elapse)
*
* Jean-benoit Hardouin, Regional Health Observatory of Orléans - France
* jean-benoit.hardouin@orscentre.org
*
* News about this program : http://anaqol.free.fr
* FreeIRT Project : http://freeirt.free.fr
*
* Copyright 2003-2005 Jean-Benoit Hardouin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
************************************************************************************************************/
/***********************************************************************************************************
DEFINITION / SYNTAX
***********************************************************************************************************/
program define raschtestv7,rclass
syntax varlist(min=1 numeric) [if] [in] , [ MEANdiff DIRsave(string) FILESsave nodraw PAUse REPlace ICC INFormation SPLITtests FITgraph Method(string) group(numlist >0 ascen) AUTOGroup Test(string) q2 GENLT(string) GENSCOre(string) GENFIT(string) GRAph v8 COMp(varname) time TRace Details Explain ]
/***********************************************************************************************************
EXPLAIN OPTION
***********************************************************************************************************/
if "`explain'"!="" {
di in green "{hline}"
di in green "{title:ESTIMATION METHODS} (define by the {cmd:method} option)"
di in green "{hline}"
di
di in green "{p 0 0 0}{hi:CML : Conditional Maximum Likelihood} ({cmd:method(cml)}) {p_end}"
di in green "{p 4 4 2}The latent trait is considered as a set of fixed parameters, and the difficulty parameters are estimated conditionnally to them{p_end}"
di in green "{p 4 4 2}The identifiability constraint consit to fix the difficulty parameter of the last item to 0{p_end}"
di in green "{p 0 0 0}{hi:MML : Marginal Maximum Likelihood} ({cmd:method(mml)}){p_end}"
di in green "{p 4 4 2}The latent trait is considered as a random variable, and the difficulty parameters are estimated marginally to it{p_end}"
di in green "{p 4 4 2}The identifiability constraint consit to fix the mean fo the latent trait to 0{p_end}"
di in green "{p 0 0 0}{hi:GEE : Generalized Estimating Equation} ({cmd:method(gee)}){p_end}"
di in green "{p 4 4 2}Same assumption than for the MML technic.{p_end}"
di
di in green "{hline}"
di in green "{title:NOTATIONS} "
di in green "{hline}"
di
di in green "{p 0 0 0}{hi :J} is the number of items.{p_end}"
di in green "{p 0 0 0}{hi :N} is the number of individuals.{p_end}"
di in green "{p 0 0 0}{hi :N_c} is the number of individuals with a score different of 0 and of J.{p_end}"
di in green "{p 0 0 0}{hi :G} is the number of number of groups of scores.{p_end}"
di
di in green "{hline}"
di in green "{title:TESTS} "
di in green "{hline}"
di
di in green "{p 0 0 0}{hi: General test}{p_end}"
di in green "{p 4 4 2}The {hi: Andersen test} consit to test if the difficulty parameters of the items are the same values in estimating them in each subgroups of individuals defined by the values of the score (who can be grouped by the {cmd:group} or {cmd:autogroup} options). This test is only available with CML technic.{p_end}"
di
di in green "{p 0 0 0}{hi: Tests of the first order}{p_end} (defined by the {cmd:test} option)"
di in green "{p 4 4 2}The {hi: Wright Panchapakesan test}, the {hi:Q1 test}, the {hi:R1c test} and the {hi:R1m test} consist to test the adequation between the observed and the theorical number of positive responses to each item in each group of scores (defined by the {cmd:group} or {cmd:autogroup} options). The differences between the tests are explained by the method to estimate the theorical number of positive response in each group of scores, and by the definition of the covariance matrix between these theorical numbers. {p_end}"
di in green "{p 4 4 2}{hi: The Wright Panchapakesan test} ({cmd:test(WP)}) consist to estimate the number of positive responses to each item in function of the estimations of the difficulty parameters and of the individual values of the latent trait. The covariance matrix between these estimations is a diagonal matrix. {p_end}"
di in green "{p 4 4 2}{hi:The Van den Wollenberg Q1 test} ({cmd:test(Q)}) consist to estimate the number of positive responses to each item only in function of the estimations of the difficulty parameters. The covariance matrix between these estimations is a diagonal matrix.{p_end}"
di in green "{p 4 4 2}{hi:The R1c test} ({cmd:test(R)}) consist to estimate the number of positive responses to each item only in function of the estimations of the difficulty parameters. The covariance matrix between these estimations is no more a diagonal matrix. This test is available only with a CML technic of estimation of the parameters.{p_end}"
di in green "{p 4 4 2}{hi:The R1m test} ({cmd:test(R)}) is the same test than the R1c test, except that the individuals with a nul score or a perfect score are considered. This test is available with the MML or the GEE technic of estimation of the parameters.{p_end}"
di
di in green "{p 0 0 0}{hi:Others Tests and indexes}{p_end}"
di in green "{p 4 4 2}{hi:The split test} (obtained by the {cmd:splittest} option) consists to estimate the parameters of the items conditionnaly to the response to one of them. We can test the global difference between the two estimated vectors of parameters with the Andersen LR Z test. This test allows detecting dependent items.{p_end}"
di in green "{p 4 4 2}{hi:The U test} allows detecting items with low or high discriminating powers. The U statistics follow a standardized gaussian distribution, and a significant positive value signifies that the slope of the item is too low (compared to the others items) and a significant negative value signifies that the slope of the item is too high (compared to the others). {p_end}"
di in green "{p 4 4 2}{hi:The OUTFIT and INFIT} (graphs obtained by the {cmd:fitgraph} option) indexes allows detecting items with a baf fit. The values of these two indexes must be in the interval [.6;1.4].{p_end}"
di
exit
}
/***********************************************************************************************************
INTRODUCTION
***********************************************************************************************************/
if "`trace'"!="" {
di in green "*** Tests of conformity"
}
if "`v8'"=="" {
version 7.0
}
else {
version 8.0
}
local st = "$S_TIME"
local nbitems : word count `varlist'
marksample touse ,novarlist
tokenize `varlist'
if "`method'"=="" {
local method cml
}
if "`test'"=="" {
local test R
}
local method=lower("`method'")
local test=upper("`test'")
if "`method'"!="mml"&"`method'"!="cml"&"`method'"!="gee" {
di in red "Uncorrect method option."
error 198
exit
}
if "`test'"!="R"&"`test'"!="Q"&"`test'"!="WP"&"`test'"!="NONE" {
di in red "Uncorrect test option."
error 198
exit
}
if "`genfit'"!="" {
local nbwordgenfit:word count `genfit'
if `nbwordgenfit'!=2 {
di in red "Uncorrect genfit option."
di in red "This option must contain exactly two words"
error 198
exit
}
}
if "`genfit'"!=""|"`genlt'"!=""|"`genscore'"!="" {
confirm new variable `genfit' `genlt' `genscore'
if "`genfit'"!="" {
local o:word 1 of `genfit'
forvalues i=1/`nbitems' {
confirm new variable `o'``i''
}
}
}
preserve
tempfile saveraschtest
qui save `saveraschtest'
if "`autogroup'"!=""&"`group'"!="" {
di in green "The autogroup and the group options cannot be defined in the same time"
di in green "Only the group option is retained."
local autogroup
}
if "`autogroup'"!="" {
tempvar autoscore
qui gen `autoscore'=0
forvalues i=1/`nbitems' {
qui replace `autoscore'=`autoscore'+``i''
}
tempname matscore tmp
*qui tab `autoscore', matcell(`tmp')
matrix `matscore'=J(`=`nbitems'-1',3,0)
forvalues i=1/`=`nbitems'-1' {
matrix `matscore'[`i',1]=`i'
matrix `matscore'[`i',2]=`i'
qui count if `autoscore'==`i'
matrix `matscore'[`i',3]=r(N)
}
local stop=0
local j=0
while `j'<=`=`nbitems'-3'&`stop'!=1 {
local j=`j'+1
local scoretogroup=99999999
local rowtogroup1=0
local rowtogroup2=0
local stop=1
forvalues i=1/`=`nbitems'-`j'' {
if `matscore'[`i',1]>=0 & `matscore'[`i',3]<30 & `matscore'[`i',3]<`scoretogroup' {
local scoretogroup=`matscore'[`i',3]
local rowtogroup1=`i'
local stop=0
}
}
if `stop'!=1 {
if `rowtogroup1'>1&`rowtogroup1'<`=`nbitems'-`j'' {
if `matscore'[`=`rowtogroup1'-1',1]<`matscore'[`=`rowtogroup1'+1',1] {
local rowtogroup2=`rowtogroup1'
local rowtogroup1=`rowtogroup1'-1
}
else {
local rowtogroup2=`rowtogroup1'+1
}
}
else if `rowtogroup1'==1 {
local rowtogroup2=2
}
else if `rowtogroup1'==`=`nbitems'-`j'' {
local rowtogroup2=`nbitems'-`j'
local rowtogroup1=`nbitems'-`j'-1
}
matrix `tmp'=`matscore'
matrix `matscore'=J(`=`nbitems'-`j'',3,0)
if `rowtogroup1'!=1 {
matrix `matscore'[1,1]=`tmp'[1..`=`rowtogroup1'-1',1..3]
}
matrix `matscore'[`rowtogroup1',1]=`tmp'[`rowtogroup1',1]
matrix `matscore'[`rowtogroup1',2]=`tmp'[`rowtogroup2',2]
matrix `matscore'[`rowtogroup1',3]=`tmp'[`rowtogroup1',3]+`tmp'[`rowtogroup2',3]
if `rowtogroup2'!=`=`nbitems'-`j'' {
matrix `matscore'[`rowtogroup2',1]=`tmp'[`=`rowtogroup2'+1'..`=`nbitems'-`j'',1..3]
}
}
}
local nbrows=rowsof(`matscore')-1
local thresholds
forvalues i=1/`nbrows' {
local tmp=`matscore'[`i',2]
local thresholds `thresholds' `tmp'
}
local group `thresholds'
}
if "`group'"=="" {
forvalues i=1/`=`nbitems'-1' {
local group "`group' `i'"
}
}
local nbgroups:word count `group'
local groupmax:word `nbgroups' of `group'
if `groupmax'>=`nbitems' {
di in red "You cannot form a group with the higher possible score."
di in red "The higher possible value of the group option is `=`nbitems'-1'."
di in red "Please correct your group option."
error 198
exit
}
else {
if `groupmax'!=`=`nbitems'-1' {
local group "`group' `=`nbitems'-1'"
local nbgroups=`nbgroups'+1
}
}
if "`comp'"!=""&"`method'"=="cml" {
di in red "You cannot compare two populations with the CML estimation method"
di in red "Use another method of estimation."
error 198
exit
}
local nbgroups=`nbgroups'+1
if "`dirsave'"!=""&"`filessave'"=="" {
di in ye "If you want to save yours graphs, use the filessave option"
}
if "`filessave'"!="" {
if "`dirsave'"=="" {
local dirsave "`c(pwd)'"
}
di in ye "The graphs files will be saved in `dirsave'"
}
if "`dirsave'"!="" {
if "`filesave'"=="" {
local filesave "filesave"
}
}
if "`pause'"!=""&"`draw'"=="" {
pause on
}
/***********************************************************************************************************
POSSIBLE TEST
***********************************************************************************************************/
if ("`icc'"!=""|"`fitgraph'"!=""|"`splittest'"!=""|"`details'"!="")&"`test'"=="NONE" {
di in green "You cannot use the details, icc, fitgraph or splittest if you use test(none)."
di in green "These options are ignored."
local icc
local fitgraph
local splittest
}
if "`method'"!="cml"&"`test'"=="WP" {
di in green "The Wright-Panchapakesan test is not authorized with MML or GEE."
di in green "The WP tests are replaced by Van den Wollenberg Q tests."
local test Q
}
if "`test'"==""|"`test'"=="R" {
local test "R"
if "`method'"=="cml" {
local namewp "R1c"
local descwp "R1c test"
}
else {
local namewp="R1m"
local descwp "R1m test"
}
}
if `nbitems'>999999|"`test'"=="WP" {
local namewp " Y"
local descwp "Wright-Panchapakesan Y test"
local q2
}
else if "`test'"=="Q" {
local namewp " Q1"
local descwp "Van den Wollenberg Q1 test"
}
if "`method'"!="cml"&"`meandiff'"!="" {
di in green "The MEANDIFF option is not available with MML or GEE."
di in green "This option is ignored."
local meandiff
}
if "`method'"!="cml"&"`splittests'"!="" {
di in green "The SPLITTESTS option is not available with MML or GEE."
di in green "This option is ignored."
local splittests
}
/***********************************************************************************************************
SCORES AND GROUPS
************************************************************************************************************/
qui count if `touse'==1
local N=r(N)
tempvar id
gen `id'=_n
qui keep if `touse'==1
qui keep `varlist' `comp' `id'
tempname rep item
tempvar score realscore
gen `score'=0
forvalues i=1/`nbitems' {
rename ``i'' `rep'`i'
qui drop if `rep'`i'==.|`rep'`i'>1
qui replace `score'=`score'+`rep'`i'
}
local liminf0=0
local limsup0=0
local liminf`nbgroups'=`nbitems'
local limsup`nbgroups'=`nbitems'
local recode
forvalues i=1/`=`nbgroups'-1' {
if `i'!= 1{
local liminf`i' : word `=`i'-1' of `group'
}
else {
local liminf1=0
}
local liminf`i'=`liminf`i''+1
local limsup`i':word `i' of `group'
local recode "`recode' `liminf`i''/`limsup`i''=`i'"
}
qui gen `realscore'=`score'
qui recode `score' `recode' `nbitems'=`nbgroups'
local smallgroup=0
forvalues i=0/`nbgroups' {
qui count if `score'==`i'
local effscore`i'=r(N)
if `i'!=0&`i'!=`nbgroups'&`effscore`i''<30 {
local smallgroup=1
}
}
/***********************************************************************************************************
ESTIMATION OF THE DIFFICULTY PARAMETERS
************************************************************************************************************/
if "`trace'"!="" {
di in green "*** Estimation of the difficulty parameters"
}
tempname ll coef var beta Vbeta est
if "`method'"=="gee" {
qui geekel2d `rep'1-`rep'`nbitems',ll
if `r(error)'==1 {
di "The variance of the latent trait probably is too high to made the GEE a efficient method to estimate the parameters."
error 499
exit
}
scalar `ll'=r(ll)
local nbind=r(N)
matrix `coef'=r(b)
matrix `est'=`coef'
matrix `est'[1,`=`nbitems'+1']=sqrt(`est'[1,`=`nbitems'+1'])
matrix `var'=r(V)
matrix `beta'=`coef'[1,1..`nbitems']
matrix `Vbeta'=`var'[1..`nbitems',1..`nbitems']
local sig=sqrt(`coef'[1,`=`nbitems'+1'])
local sesig=sqrt(`var'[`=`nbitems'+1',`=`nbitems'+1'])/sqrt(`nbind')/(`sig'*2)
}
qui reshape long `rep' , i(`id') j(`item')
tempvar diff tl
gen `diff'=0
forvalues i=1/`nbitems' {
qui gen `rep'`i'=`item'==`i'
qui replace `rep'`i'=-`rep'`i'
}
if "`method'"=="mml" {
qui xtlogit `rep' `rep'1-`rep'`nbitems', i(`id') nocons
matrix `est'=e(b)
matrix `est'[1,`=`nbitems'+1']=exp(`est'[1,`=`nbitems'+1']/2)
}
else if "`method'"=="cml" {
qui clogit `rep' `rep'1-`rep'`=`nbitems'-1', group(`id')
}
if "`method'"!="gee" {
matrix `coef'=e(b)
scalar `ll'=e(ll)
local nbind=e(N)/`nbitems'
matrix `var'=e(V)
if "`meandiff'"!="" {
matrix `var'=J(`nbitems',`nbitems',.)
matrix `coef'=J(1,`nbitems',.)
local param
local lin `rep'1
forvalues j=2/`=`nbitems'-1' {
local lin `lin'+`rep'`j'
}
local lin (`lin')/`nbitems'
forvalues j=1/`=`nbitems'-1' {
qui lincom `rep'`j'-`lin'
matrix `coef'[1,`j']=`r(estimate)'
matrix `var'[`j',`j']=`r(se)'^2
}
qui lincom -`lin'
matrix `coef'[1,`nbitems']=`r(estimate)'
matrix `var'[`nbitems',`nbitems']=`r(se)'^2
}
if "`method'"=="mml" {
local sig=e(sigma_u)
local sesig=sqrt(`var'[`=`nbitems'+1',`=`nbitems'+1'])*`sig'/2
matrix `beta'=`coef'[1,1..`nbitems']
matrix `Vbeta'=`var'[1..`nbitems',1..`nbitems']
}
else if "`method'"=="cml"&"`meandiff'"==""{
matrix `beta'=`coef'[1,1..`=`nbitems'-1']
matrix `Vbeta'=`var'[1..`=`nbitems'-1',1..`=`nbitems'-1']
}
else if "`method'"=="cml"&"`meandiff'"!=""{
matrix `beta'=`coef'
matrix `Vbeta'=`var'
}
}
if ("`method'"=="mml"|"`method'"=="gee") {
local colnames
forvalues i=1/`nbitems' {
local colnames "`colnames' `rep':`rep'`i'"
}
local id2=substr("`id'",1,4)
local colnames "`colnames' `id2'1:_cons"
matrix colnames `est'=`colnames'
/************************************
A VIRER DEBUT
****************************************/
/*
tempfile jbh
save `jbh',replace
set trace on
rename `rep' rep
forvalues i=1/`nbitems' {
rename `rep'`i' rep`i'
}
rename `id' id
matrix est=`est'
keep rep* id
save c:\ado\jbh.dta,replace
set trace off
use `jbh',replace
*/
/************************************
A VIRER FIN
****************************************/
capture gllamm `rep' `rep'1-`rep'`nbitems', i(`id') nocons family(binom) link(logit) trace from(`est') eval
tempname u
qui gllapred `u',u
tempname theta sdtheta
matrix `theta'=J(1,`=`nbitems'+1',0)
matrix `sdtheta'=J(`=`nbitems'+1',`=`nbitems'+1',0)
forvalues s=0/`nbitems' {
qui su `u'm1 if `realscore'==`s'
local theta`s'=r(mean)
qui su `u's1 if `realscore'==`s'
local sdtheta`s'=r(mean)
matrix `theta'[1,`=`s'+1']=`theta`s''
matrix `sdtheta'[`=`s'+1',`=`s'+1']=`sdtheta`s''
}
}
forvalues i=1/`nbitems' {
if `i'==`nbitems'&"`method'"=="cml"&"`meandiff'"=="" {
local beta`i'=0
local sd`i' .
local fixed`i' "*"
}
else {
local beta`i'=`coef'[1,`i']
local sd`i'=sqrt(`var'[`i',`i'])
}
qui replace `diff'=-`beta`i'' if `item'==`i'
}
/***********************************************************************************************************
COMPARISON OF TWO POPULATIONS
***********************************************************************************************************/
if "`comp'"!=""&"`method'"!="cml" {
if "`trace'"!="" {
di in green "*** Test of comparison of two populations"
}
qui inspect `comp'
local unique=r(N_unique)
if `unique'== 2 {
qui su `comp'
local mincomp=r(min)
local maxcomp=r(max)
tempname bmin bmax
qui xtlogit `rep' if `comp'==`mincomp',offset(`diff') i(`id')
matrix `bmin'=e(b)
local meanmin=`bmin'[1,1]
local varmin=e(sigma_u)^2
local llmin=e(ll)
local Nmin=e(N_g)
qui xtlogit `rep' if `comp'==`maxcomp',offset(`diff') i(`id')
matrix `bmax'=e(b)
local meanmax=`bmax'[1,1]
local varmax=e(sigma_u)^2
local llmax=e(ll)
local Nmax=e(N_g)
local Zcomp=(`meanmin'-`meanmax')/sqrt(`varmin'/`Nmin'+`varmax'/`Nmax')
local pvalue=1-norm(abs(`Zcomp'))
}
else {
di "It is impossible to compare more than two populations"
di "The comparison process is not run"
local comp
}
}
/***********************************************************************************************************
ESTIMATION OF THE ABILITY PARAMETERS
************************************************************************************************************/
if `nbitems'>=2 {
if "`trace'"!="" {
di in green "*** Estimation of the ability parameters"
}
if "`method'"=="cml" {
tempfile verytmp
qui save `verytmp',replace
drop _all
qui set obs 10001
qui gen theta=(_n-5001)/1000
qui gen A=1
*set trace on
forvalues j=1/`nbitems' {
qui gen u`j'=exp(theta-`beta`j'')
qui gen p`j'=u`j'/(1+u`j')
qui gen a`j'=1/u`j'
qui replace A=A*a`j'
qui gen i`j'=u`j'/(1+u`j')^2
qui gen j`j'=(u`j'*(1-u`j'))/(1+u`j')^3
}
qui egen P=rsum(p*)
qui egen I=rsum(i*)
qui egen J=rsum(j*)
qui gen V=1/I^2*(I+J^2)/(4*I^2)
tempname theta sdtheta
matrix `theta'=J(1,`=`nbitems'+1',0)
matrix `sdtheta'=J(`=`nbitems'+1',`=`nbitems'+1',.)
forvalues s=0/`nbitems' {
qui gen f`s'=abs(`s'-P+.5*J/I)
qui sort f`s'
matrix `theta'[1,`=`s'+1']=theta[1]
matrix `sdtheta'[`=`s'+1',`=`s'+1']=V[1]
}
use `verytmp',replace
}
qui gen `tl'=0
forvalues s=0/`nbitems' {
local theta`s'=`theta'[1,`=`s'+1']
qui replace `tl'=`theta`s'' if `realscore'==`s'
local sdtheta`s'=sqrt(`sdtheta'[`=`s'+1',`= `s'+1'])
}
tempname pred
qui gen `pred'=log(exp(`rep'*(`tl'+`diff'))/(1+exp(`tl'+`diff')))
qui su `pred'
local globalll=r(sum)
forvalues i=0/`nbitems' {
qui count if `score'==`i'&`item'==1
local nbscore`i'=r(N)
qui count if `realscore'==`i'&`item'==1
local nbrealscore`i'=r(N)
}
}
/***********************************************************************************************************
TESTS OF THE FIRST ORDER
************************************************************************************************************/
if "`test'"!="NONE" {
if "`trace'"!="" {
di in green "*** Tests of the first order"
}
tempname Obs Obs2 Pi Th Th2
matrix define `Obs'=J(`nbitems',`=`nbitems'-1',0)
matrix define `Obs2'=J(`nbitems',`=`nbgroups'-1',0)
matrix define `Pi'=J(`nbitems',`=`nbitems'-1',0)
matrix define `Th'=J(`nbitems',`=`nbitems'-1',0)
matrix define `Th2'=J(`nbitems',`=`nbgroups'-1',0)
local listofitemsc
/* Estimation of the gamma symetrical functions*/
local c0 "1"
local c`nbitems' "`nbitems'*x"
forvalues j=1/`nbitems' {
local listini`j'
local listofitemsc "`listofitemsc' `beta`j''"
local c0 `c0'*(1+exp(x-`beta`j''))
local c`nbitems' `c`nbitems''-`beta`j''
forvalues k=1/`nbitems' {
local listini`j'k`k'
if `k'!=`j' {
local listini`j' "`listini`j'' `beta`k''"
}
forvalues l=1/`nbitems' {
if `l'!=`j'&`l'!=`k' {
local listini`j'k`k' "`listini`j'k`k'' `beta`l''"
}
}
}
}
gammasym `listofitemsc'
/*Estimation, for each value of the score s of the probability to respond to each item (Pi) and of the theorical number of positive responses (Ths) and of theorical number of positive respond per item pair (Ws)*/
forvalues s=1/`nbitems' {
local denom`s'=r(gamma`s')
tempname W`s'
matrix define `W`s''=J(`nbitems',`nbitems',0)
}
tempvar prob prob2 z y v z2 y2 v2
qui gen `prob'=.
qui gen `prob2'=.
forvalues j=1/`nbitems' {
forvalues s=1/`=`nbitems'-1' {
qui count if `rep'==1&`item'==`j'&`realscore'==`s'
matrix `Obs'[`j',`s']=r(N)
if "`test'"!="WP" {
gammasym `listini`j''
local num`j'=r(gamma`=`s'-1')
if "`method'"=="cml" {
matrix `Pi'[`j',`s']=exp(-`beta`j'')*`num`j''/`denom`s''
}
else if "`test'"=="R"&`nbrealscore`s''!=0{
gausshermite exp(`s'*x)/(`c0'), sigma(`sig')
local int`s'=r(int)
local tmp=exp(-`beta`j'')*`num`j''*`int`s''*`nbind'/`nbrealscore`s''
matrix `Pi'[`j',`s']=`tmp'
}
else if "`test'"=="Q" {
matrix `Pi'[`j',`s']=exp(-`beta`j'')*`num`j''/`denom`s''
}
else if `nbrealscore`s''==0 {
matrix `Pi'[`j',`s']=0
}
if "`test'"=="R" {
forvalues k=`=`j'+1'/`nbitems' {
if `s'>=2 {
gammasym `listini`j'k`k''
local num`j'k`k'=r(gamma`=`s'-2')
if "`method'"=="cml" {
matrix `W`s''[`j',`k']=`nbrealscore`s''*exp(-`beta`j'')*exp(-`beta`k'')*`num`j'k`k''/`denom`s''
}
else {
matrix `W`s''[`j',`k']=exp(-`beta`j'')*exp(-`beta`k'')*`num`j'k`k''*`int`s''*`nbind'
}
matrix `W`s''[`k',`j']=`W`s''[`j',`k']
}
}
}
}
else if "`test'"=="WP" {
matrix `Pi'[`j',`s']=exp(`theta`s''-`beta`j'')/(1+exp(`theta`s''-`beta`j''))
}
matrix `Th'[`j',`s']=`Pi'[`j',`s']*`nbrealscore`s''
qui replace `prob'=`Pi'[`j',`s'] if `realscore'==`s'&`item'==`j'
qui replace `prob2'=exp(`theta`s''-`beta`j'')/(1+exp(`theta`s''-`beta`j'')) if `realscore'==`s'&`item'==`j'
matrix `W`s''[`j',`j']=`nbrealscore`s''*`Pi'[`j',`s']
if "`test'"!="R" {
matrix `W`s''[`j',`j']=`W`s''[`j',`j']*abs(1-`Pi'[`j',`s'])
}
}
}
qui gen `v2'=abs(`prob2'*(1-`prob2'))
qui gen `z2'=(`rep'-`prob2')^2
qui gen `y2'=`z2'/`v2'
forvalues j=1/`nbitems' {
qui su `y2' if `item'==`j'
local outfit`j'=r(mean)
qui su `z2' if `item'==`j'
local n=r(sum)
qui su `v2' if `item'==`j'
local d=r(sum)
local infit`j'=`n'/`d'
}
tempname tmp stattest testitems
/*Estimation, by scores group g, of the theorical number of positive response (Th2g) and of the positive respond to each items pair (W2g)*/
scalar `stattest'=0
forvalues g=1/`=`nbgroups'-1' {
tempname W2`g' d2`g'
matrix define `W2`g''=J(`nbitems',`nbitems',0)
forvalues s=`liminf`g''/`limsup`g'' {
forvalues j=1/`nbitems' {
matrix `Obs2'[`j',`g']=`Obs2'[`j',`g']+`Obs'[`j',`s']
matrix `Th2'[`j',`g']=`Th2'[`j',`g']+`Th'[`j',`s']
if "`test'"=="R" {
forvalues k=`=`j'+1'/`nbitems' {
matrix `W2`g''[`j',`k']=`W2`g''[`j',`k']+`W`s''[`j',`k']
matrix `W2`g''[`k',`j']=`W2`g''[`j',`k']
}
}
matrix `W2`g''[`j',`j']=`W2`g''[`j',`j']+`W`s''[`j',`j']
}
}
/*Estimation of the d2g vectors*/
matrix `d2`g''=`Obs2'[1..`nbitems',`g']-`Th2'[1..`nbitems',`g']
/*Estimation of the influences on the test of each item (testitemsg matrix) and of the test statistic (stattest)*/
tempname test`g' testitems`g'
matrix `test`g''=`d2`g'''*syminv(`W2`g'')*`d2`g''
capture matrix `testitems`g''=cholesky(syminv(`W2`g''))*`d2`g''
if _rc!=0 {
matrix `tmp'=J(`nbitems',`nbitems',0)
forvalues j=1/`nbitems' {
matrix `tmp'[`j',`j']=`W2`g''[`j',`j']
}
di in green "Score `g' : The weight matrix is not positive-definite, the diagonal matrix is used to estimate the contribution of the items on the `wpname' statistic"
matrix list `tmp'
matrix `testitems`g''=cholesky(syminv(`tmp'))*`d2`g''
}
else {
matrix `testitems`g''=cholesky(syminv(`W2`g''))*`d2`g''
}
scalar `stattest'=`stattest'+`test`g''[1,1]
}
matrix `testitems'=J(`nbitems',1,0)
forvalues j=1/`nbitems' {
forvalues g=1/`=`nbgroups'-1' {
matrix `testitems'[`j',1]=`testitems'[`j',1]+`testitems`g''[`j',1]^2
}
}
/*Adaptation for the Q1 statistic*/
if "`test'"=="Q" {
scalar `stattest'=`stattest'*`=`nbitems'-1'/`nbitems'
}
/*Correction for R1m and Q1m*/
if ("`test'"=="R"|"`test'"=="Q")&("`method'"=="mml"|"`method'"=="gee") {
local c`nbitems' exp(`c`nbitems'')/(`c0')
local c0 1/(`c0')
gausshermite `c0', sigma(`sig')
local ci0=r(int)*`nbind'
gausshermite `c`nbitems'',sigma(`sig')
local ci`nbitems'=`nbind'*r(int)
scalar `stattest'=`stattest'+(`nbrealscore0'-`ci0')^2/`ci0'+(`nbrealscore`nbitems''-`ci`nbitems'')^2/`ci`nbitems''
}
/***********************************************************************************************************
TESTS U
************************************************************************************************************/
if "`method'"=="cml" {
if "`trace'"!="" {
di in green "*** Tests U"
}
local quartile=`nbind'/4
local c1=0
local n1=0
while `n1'<`quartile' {
local c1=`c1'+1
local n1=`n1'+`nbrealscore`c1''
}
local c2=`nbitems'
local n2=0
while `n2'<`quartile' {
local c2=`c2'-1
local n2=`n2'+`nbrealscore`c2''
}
forvalues j=1/`nbitems' {
local zu1=0
local zu2=0
forvalues s=1/`c1' {
local zu1=`zu1'+`nbrealscore`s''*(`Obs'[`j',`s']/`nbrealscore`s''-`Pi'[`j',`s'])/sqrt(`nbrealscore`s''*`Pi'[`j',`s']*(1-`Pi'[`j',`s']))
}
forvalues s=`c2'/`=`nbitems'-1' {
local zu2=`zu2'+`nbrealscore`s''*(`Obs'[`j',`s']/`nbrealscore`s''-`Pi'[`j',`s'])/sqrt(`nbrealscore`s''*`Pi'[`j',`s']*(1-`Pi'[`j',`s']))
}
local U`j'=(`zu1'-`zu2')/sqrt(`c1'+`nbitems'-`c2')
}
}
/***********************************************************************************************************
TESTS OF THE SECOND ORDER /*undocumented in beta test*/
************************************************************************************************************/
if "`q2'"!="" {
if "`trace'"!="" {
di in green "*** Tests of the second order"
}
tempfile Q2file
qui save `Q2file',replace
qui use `saveraschtest',replace
qui keep if `touse'==1
gen `score'=0
forvalues i=1/`nbitems' {
local Q2i`i'
rename ``i'' `rep'`i'
qui replace `score'=`score'+`rep'`i'
}
qui recode `score' `recode'
forvalues i=1/`nbitems' {
local Q2i`i'=0
forvalues j=`=`i'+1'/`nbitems' {
local listinci`i'j`j'
forvalues k=1/`nbitems' {
if `k'!=`i'&`k'!=`j' {
local listinci`i'j`j' "`listinci`i'j`j'' `beta`k''"
}
}
}
}
local Q2tot=0
forvalues k=2/`=`nbitems'-1' {
forvalues i=1/`=`nbitems'-1' {
forvalues j=`=`i'+1'/`nbitems' {
if `k'==1 {
local num=0
}
else {
gammasym `listinci`i'j`j''
local num=r(gamma`=`k'-2')
}
local athi`i'j`j'k`k'=exp(-`beta`i'')*exp(-`beta`j'')*`num'/`denom`k''
local bthi`i'j`j'k`k'=`nbth`i's`k''-`athi`i'j`j'k`k''
local cthi`i'j`j'k`k'=`nbth`j's`k''-`athi`i'j`j'k`k''
local dthi`i'j`j'k`k'=1-`athi`i'j`j'k`k''-`bthi`i'j`j'k`k''-`cthi`i'j`j'k`k''
}
}
}
forvalues k=1/`=`nbgroups'-1' {
local Q2`k'=0
forvalues i=1/`=`nbitems'-1' {
forvalues j=`=`j'+1'/`nbitems' {
qui count if `rep'`i'==1&`rep'`j'==1&`score'==`k'
local aempi`i'j`j'k`k'=r(N)
local ath2i`i'j`j'k`k'=0
local bth2i`i'j`j'k`k'=0
local cth2i`i'j`j'k`k'=0
local dth2i`i'j`j'k`k'=0
}
}
if `limsup`k''!=1 {
forvalues l=`liminf`k''/`limsup`k'' {
forvalues i=1/`=`nbitems'-1' {
forvalues j=`=`i'+1'/`nbitems' {
if `l'!=1 {
local ath2i`i'j`j'k`k'=`ath2i`i'j`j'k`k''+`athi`i'j`j'k`l''*`nbrealscore`l''
local bth2i`i'j`j'k`k'=`bth2i`i'j`j'k`k''+`bthi`i'j`j'k`l''*`nbrealscore`l''
local cth2i`i'j`j'k`k'=`cth2i`i'j`j'k`k''+`cthi`i'j`j'k`l''*`nbrealscore`l''
local dth2i`i'j`j'k`k'=`dth2i`i'j`j'k`k''+`dthi`i'j`j'k`l''*`nbrealscore`l''
}
}
}
}
forvalues i=1/`=`nbitems'-1' {
forvalues j=`=`i'+1'/`nbitems' {
local d2i`i'j`j'k`k'=(`aempi`i'j`j'k`k''-`ath2i`i'j`j'k`k'')^2
local Q2i`i'j`j'k`k'=`d2i`i'j`j'k`k''/`ath2i`i'j`j'k`k''+`d2i`i'j`j'k`k''/`bth2i`i'j`j'k`k''+`d2i`i'j`j'k`k''/`cth2i`i'j`j'k`k''+`d2i`i'j`j'k`k''/`dth2i`i'j`j'k`k''
local Q2i`i'=`Q2i`i''+`Q2i`i'j`j'k`k''
local Q2i`j'=`Q2i`j''+`Q2i`i'j`j'k`k''
local Q2`k'=`Q2`k''+`Q2i`i'j`j'k`k''
}
}
}
local Q2tot=`Q2tot'+`Q2`k''
}
forvalues i=1/`nbitems' {
di in green "Item ``i'' : Q2 = `Q2i`i''"
}
local Q2=`Q2tot'*(`nbitems'-3)/(`nbitems'-1)
di in green "Q2 = `Q2tot'"
qui use `Q2file',replace
}
/***********************************************************************************************************
TEST LR Z
************************************************************************************************************/
if "`method'"=="cml" {
if "`trace'"!="" {
di in green "*** Tests LR of Andersen"
}
local ssll=0
tempname Zfile
qui save `Zfile', replace
qui use `saveraschtest',replace
qui keep if `touse'==1
gen `score'=0
forvalues j=1/`nbitems' {
qui replace `score'=`score'+``j''
}
qui recode `score' `recode' `nbitems'=`nbgroups'
forvalues i=1/`=`nbgroups'-1' {
if `effscore`i''>0 {
qui raschtestv7 `varlist' if `score'==`i', test(NONE)
local ll`i'=r(cll)
local ssll=`ssll'+(`ll`i'')
}
}
local Z=2*`ssll'-2*`ll'
use `Zfile',replace
tempname AndersenZ
matrix define `AndersenZ'=(`Z',`=(`nbgroups'-2)*(`nbitems'-1)',1-chi2(`=(`nbitems'-1)*(`nbgroups'-2)',`Z'))
}
}
/***********************************************************************************************************
DISPLAYING RESULTS WITH TESTS
************************************************************************************************************/
if "`test'"!="NONE" {
local conttest= "_c"
}
di
tempname itemfit globalfit
matrix `globalfit'=J(1,3,0)
if "`method'"=="cml" {
di in green "Estimation method: " in yellow "Conditional maximum likelihood (CML)"
local nbtest=`nbgroups'-1
local line=77
}
else if "`method'"=="mml"{
di in green "Estimation method: " in yellow "Marginal maximum likelihood (MML)"
local nbtest=`nbgroups'+1
local line=70
}
else if "`method'"=="gee" {
di in green "Estimation method: " in yellow "Generalized Estimating Equations (GEE)"
local nbtest=`nbgroups'+1
local line=70
}
if "`test'"=="NONE" {
local line=34
}
di in green "Number of items: " in yellow `nbitems'
di in green "Number of groups: " in yellow `=`nbgroups'+1' `conttest'
if "`test'"!="NONE" {
di in green " (" in yellow "`nbtest'" in green " of them are used to compute the statistics of test)"
}
if "`method'"=="cml" {
local nbind=`nbind'+`effscore0'+`effscore`nbgroups''
local cont "_c"
matrix `itemfit'=J(`nbitems',6,0)
}
else {
local cont
matrix `itemfit'=J(`nbitems',5,0)
}
local missing=`N'-`nbind'
di in green "Number of individuals: " in yellow `nbind' in green " (" in yellow `missing' in green " individuals removed for missing values)"
di in green "Number of individuals with nul or perfect score: " in yellow `=`effscore0'+`effscore`nbgroups'''
if "`method'"=="cml" {
di in green "Conditional log-likelihood: " in yellow %-13.4f `ll'
di in green "Log-likelihood: " in yellow %-13.4f `globalll'
}
else {
di in green "Marginal log-likelihood: " in yellow %-13.4f `ll'
di in green "Log-likelihood: " in yellow %-13.4f `globalll'
}
di
noi di in green _col(16) "Difficulty"
noi di in green _col(9) "Items" _col(16) "parameters" _col(28) "std Err." `conttest'
if "`test'"!="NONE" {
di _col(41) "`namewp'" _col(47) "df" _col(50) "p-value" _col(58) "Outfit" _col(66) "Infit" `cont'
if "`method'"=="cml" {
di in green _col(77) "U"
}
}
di in green "{hline `line'}"
forvalues i=1/`nbitems' {
noi di in green "`fixed`i''" in yellow _col(3) %12s abbrev("``i''" ,12) in yellow _col(18) %8.5f `beta`i'' _col(29) %6.5f `sd`i'' `conttest'
if "`test'"!="NONE" {
di _col(36) %8.3f `testitems'[`i',1] _col(46) %3.0f `=`nbgroups'-2' _col(51) %6.4f 1-chi2(`=`nbgroups'-2',`testitems'[`i',1]) _col(58) %6.3f `outfit`i'' _col(65) %6.3f `infit`i'' `cont'
matrix `itemfit'[`i',1]=`testitems'[`i',1]
matrix `itemfit'[`i',2]=`=`nbgroups'-2'
matrix `itemfit'[`i',3]=1-chi2(`=`nbgroups'-2',`testitems'[`i',1])
matrix `itemfit'[`i',4]=`outfit`i''
matrix `itemfit'[`i',5]=`infit`i''
if "`method'"=="cml" {
di in ye _col(72) %6.3f `U`i''
matrix `itemfit'[`i',6]=`U`i''
}
}
}
di in green "{hline `line'}"
if "`test'"!="NONE" {
if "`method'"=="cml" {
local df=(`nbgroups'-2)*(`nbitems'-1)
}
else {
local df=(`nbgroups'-1)*(`nbitems'-1)-1
}
matrix `globalfit'=(`stattest',`df',1-chi2(`df',`stattest'))
noi di in green _col(7) "`descwp'" _col(32) in gr "`namewp'=" _col(36) in ye %8.3f `globalfit'[1,1] _col(46) %3.0f `globalfit'[1,2] _col(51) %6.4f `globalfit'[1,3]
if "`method'"=="cml" {
noi di in green _col(7) "Andersen LR test" _col(34) "Z=" in yellow _col(36) %8.3f `AndersenZ'[1,1] _col(46) %3.0f `AndersenZ'[1,2] _col(51) %6.4f `AndersenZ'[1,3]
}
di in green "{hline `line'}"
}
if "`method'"!="cml" {
di in green _col(10) in yellow "Sigma" _col(18) %8.5f `sig' _col(29) %6.5f `sesig'
di in green "{hline `line'}"
}
if "`method'"=="cml"&"`meandiff'"==""{
di in green "*: The difficulty parameter of this item had been fixed to 0"
}
if "`method'"=="cml"&"`meandiff'"!=""{
di in green "The mean of the difficulty parameters is fixed to 0"
}
if `smallgroup'==1&"`test'"!="NONE" {
di in green "You have groups of scores with less than 30 individuals. The tests can be invalid."
}
if "`method'"!="cml"&"`test'"=="Q" {
di in green "The Q statistics is approximated in the `method' approach. It is preferable to use the R1m test."
}
/*Tabular of the estimated values of the latent trait*/
di
di
noi di in green _col(33) "Ability"
noi di in green _col(17) "Group" _col(23) "Score" _col(30) "parameters" _col(42) "std Err." _col(54) "Freq." _c
if "`method'"=="cml"&"`test'"!="NONE" {
noi di in green _col(69) "ll"
}
else {
noi di ""
}
if "`method'"=="cml"&"`test'"!="NONE" {
local line=54
}
else {
local line=42
}
di in green _col(17) "{hline `line'}"
local nonul=0
forvalues g=0/`nbgroups' {
if `g'!=0 {
di in green _col(17) "{dup `line':-}"
}
forvalues s=`liminf`g''/`limsup`g'' {
if `s'==`liminf`g'' {
local tmp `ll`g''
local gr `g'
}
else {
local tmp
local gr
}
if `effscore`g''!=0 {
if "`method'"=="cml" {
local format1 %8.3f
}
else {
local format1 %8.5f
}
noi di in yellow _col(17) %5s "`gr'"_col(23) %5s "`s'" _col(32) `format1' `theta`nonul'' _col(42) `format1' `sdtheta`nonul'' _col(55) %4.0f `nbrealscore`s'' _col(60) %11.4f `tmp'
local nonul=`nonul'+1
}
else {
noi di in yellow _col(17) %5s "`gr'"_col(23) %5s "`s'" _col(55) %4.0f `nbrealscore`s''
}
}
}
di in green _col(17) "{hline `line'}"
/***********************************************************************************************************
DETAILS OPTION
************************************************************************************************************/
if "`details'"!="" {
forvalues g=0/`nbgroups' {
if (`g'!=0&`g'!=`nbgroups')|"`method'"!="cml" {
di
di in green "{hline 44}"
di in green "Group: " in ye "`g'" in green " from " in ye "`liminf`g''" in green " to " in ye "`limsup`g''" in green " (n=" in ye "`nbscore`g''" in green")"
di
di _col(3) "Item" _col(10) "Observed" _col(23) "Expected" _col(37) "Scaled"
di in green "{dup 44:-}"
}
if `g'!=0&`g'!=`nbgroups' {
forvalues j=1/`nbitems' {
local tmp=`d2`g''[`j',1]/sqrt(`W2`g''[`j',`j'])
di _col(3) in ye "``j''" _col(14) %4.0f `Obs2'[`j',`g'] _col(25) %6.2f `Th2'[`j',`g'] _col(36) %7.4f `tmp'
}
di in green "{dup 44:-}"
di in green "Contribution to the `namewp' statistics: " %8.4f in ye `test`g''[1,1]
}
else if "`method'"!="cml" {
if `g'==0 {
local h=0
}
else {
local h=`nbitems'
}
local tmp=abs(`nbrealscore`h''-`ci`h'')/sqrt(`ci`h'')
di in ye _col(14) %4.0f `nbrealscore`h'' _col(25) %6.2f `ci`h'' _col(36) %7.4f `tmp'
di in green "{dup 44:-}"
local tmp=`tmp'^2
di in green "Contribution to the `namewp' statistics: " %8.4f in ye `tmp'
}
}
}
/***********************************************************************************************************
OPTION ICC
************************************************************************************************************/
if "`icc'"!="" {
if "`trace'"!="" {
di in green "*** Items Characteristic Curves"
}
tempvar proba propemp propth propthb
qui replace `tl'=. if `realscore'==0|`realscore'==`nbitems'|`realscore'==.
qui gen `propemp'=.
qui gen `propth'=.
qui gen `propthb'=.
label variable `propth' "Expected ICC"
label variable `propemp' "Observed ICC"
label variable `propthb' "Expected ICC"
label variable `tl' "Latent trait"
global iccs
forvalues i=1/`nbitems' {
forvalues s=1/`=`nbitems'-1' {
qui replace `propthb'=exp(`theta`s''-`beta`i'')/(1+exp(`theta`s''-`beta`i'')) if `item'==`i'&`realscore'==`s'
}
qui replace `propemp'=.
qui replace `propth'=.
tempvar propemp`i' propth`i'
qui bysort `realscore' `item' : egen `propth`i''=mean(`propthb') if `item'==`i'
qui bysort `realscore' `item' : egen `propemp`i''=mean(`rep') if `item'==`i'
qui replace `propth'=`propth`i'' if `item'==`i'
qui replace `propemp'=`propemp`i'' if `item'==`i'
local mintl=floor(`theta1')
local maxtl=floor(`theta`=`nbitems'-1'')+1
if "`filessave'"!=""{
local saving "`dirsave'\\icc``i''"
}
if "`v8'"!="" {
graph twoway (line `propemp' `propth' `tl') if `item'==`i' , name(icc`i',replace) ytitle("") ylabel(0(.25)1) title("Observed and Expected ICC for the item ``i''") xlabel(`mintl'(1)`maxtl') `draw'
pause
if "`filessave'"!="" {
graph save icc`i' `saving' , `replace'
}
}
else {
if "`filessave'"!="" {
local saving "saving(`saving'"
if "`replace'"=="" {
local saving "`saving')"
}
else {
local saving "`saving',replace)"
}
}
qui graph `propemp' `propth' `tl' if `item'==`i' , twoway `saving' c(ll) ylabel(0(.25)1) xlabel(`mintl'(1)`maxtl') title("Observed and Expected ICC for the item ``i''")
pause
}
}
}
/***********************************************************************************************************
OPTION INFORMATION
************************************************************************************************************/
if "`information'"!="" {
if "`trace'"!="" {
di in green "*** Information graph"
}
tempfile saveinfo
qui save `saveinfo',replace
tempvar info latent
drop _all
qui set obs 2001
gen `latent'=((_n-1)/1001-1)*3
label variable `latent' "latent trait"
gen `info'=0
forvalues i=1/`nbitems' {
qui replace `info'=`info'+exp(`latent'-`beta`i'')/(1+exp(`latent'-`beta`i''))^2
}
local saving "`dirsave'\\information"
if "`v8'"!="" {
graph twoway (line `info' `latent') , name(information,replace) ytitle("Information") xlabel(-3(1)3) title("Information graph of the scale") `draw'
if "`filessave'"!="" {
graph save information `saving' , `replace'
}
pause
}
else {
if "`filessave'"!="" {
local saving "saving(`saving'"
if "`replace'"=="" {
local saving "`saving')"
}
else {
local saving "`saving',replace)"
}
}
if "`filessave'"=="" {
local saving
}
qui graph `info' `latent' , twoway `saving' c(l) xlabel(-3(1)3) title("Information graph of the scale")
pause
}
qui use `saveinfo',replace
}
/***********************************************************************************************************
OPTION FITGRAPH
************************************************************************************************************/
if "`fitgraph'"!="" {
if "`trace'"!="" {
di in green "*** Graphical validation of the fit"
}
tempname outfit meanz2 meanv2 infit
qui egen `outfit'=mean(`y2'),by(`id')
qui egen `meanz2'=sum(`z2'),by(`id')
qui egen `meanv2'=sum(`v2'),by(`id')
qui gen `infit'=`meanz2'/`meanv2'
qui su `outfit'
local maxo=r(max)
qui su `infit'
local maxi=r(max)
if "`filessave'"!=""{
local savingo "`dirsave'\\outfitind"
local savingi "`dirsave'\\infitind"
}
if "`v8'"!="" {
graph twoway (scatter `outfit' `id'), name(outfit,replace) yline(.6 1.4) title("Outfit indexes") xtitle("Individual indexes") ytitle("Outfit") ylabel(0(.2)2 2(.5)`maxo') `draw'
pause
graph twoway (scatter `infit' `id'), name(infit,replace) yline(.6 1.4) title("Infit indexes") xtitle("Individual indexes") ytitle("Infit") ylabel(0(.2)2 2(.5)`maxi') `draw'
pause
if "`filessave'"!="" {
graph save outfit `savingo' , `replace'
graph save infit `savingi' , `replace'
}
}
else {
if "`filessave'"!="" {
local savingo "saving(`savingo'"
local savingi "saving(`savingi'"
if "`replace'"=="" {
local savingo "`savingo')"
local savingi "`savingi')"
}
else {
local savingo "`savingo',replace)"
local savingi "`savingi',replace)"
}
}
graph `outfit' `id', `savingo' twoway sy(.) c(.) yline(.6 1.4) title("Outfit indexes") b2title("Individual indexes") l1("") l2title("Outfit") ylabel(0(.2)2 2(.5)`maxo')
pause
graph `infit' `id', `savingi' twoway sy(.) c(.) yline(.6 1.4) title("Infit indexes") b2title("Individual indexes") l1("") l2title("Infit") ylabel(0(.2)2 2(.5)`maxi')
pause
}
drop _all
qui set obs `nbitems'
tempvar name betap outfitj infitj
qui gen str9 `name'=""
qui gen `betap'=.
qui gen `outfitj'=.
qui gen `infitj'=.
local mino=.6
local maxo=1.4
local mini=.6
local maxi=1.4
forvalues j=1/`nbitems' {
qui replace `name'="``j''" in `j'
qui replace `betap'=`beta`j'' in `j'
qui replace `outfitj'=`outfit`j'' in `j'
qui replace `infitj'=`infit`j'' in `j'
local mino=min(`mino',`outfit`j'')
local mini=min(`mini',`infit`j'')
local maxo=max(`maxo',`outfit`j'')
local maxi=max(`maxi',`infit`j'')
}
if "`filessave'"!=""{
local savingo "`dirsave'\\outfititems"
local savingi "`dirsave'\\infititems"
}
if "`v8'"!="" {
graph twoway (scatter `outfitj' `betap',name(outfit,replace) mlabel(`name')), yline(.6 1.4) title("Outfit indexes") xtitle("Difficulty") ytitle("Outfit") ylabel(`mino'(.2)`maxo') `draw'
pause
graph twoway (scatter `infitj' `betap',name(infit,replace) mlabel(`name')), yline(.6 1.4) title("Infit indexes") xtitle("Difficulty") ytitle("Infit") ylabel(`mini'(.2)`maxi') `draw'
pause
if "`filessave'"!="" {
graph save outfit `savingo' , `replace'
graph save infit `savingi' , `replace'
}
}
else {
if "`filessave'"!="" {
local savingo "saving(`savingo'"
local savingi "saving(`savingi'"
if "`replace'"=="" {
local savingo "`savingo')"
local savingi "`savingi')"
}
else {
local savingo "`savingo',replace)"
local savingi "`savingi',replace)"
}
}
graph `outfitj' `betap', `savingo' twoway c(.) yline(.6 1.4) title("Outfit indexes") b2title("Difficulty") l1title("") l2title("Outfit") ylabel(`mino'(.2)`maxo') sy([`name'])
pause
graph `infitj' `betap', `savingi' twoway c(.) yline(.6 1.4) title("Infit indexes") b2title("Difficulty") l1title("") l2title("Infit") ylabel(`mini'(.2)`maxi') sy([`name'])
pause
}
}
/***********************************************************************************************************
OPTION SPLITTESTS
************************************************************************************************************/
if "`splittests'"!="" {
if "`trace'"!="" {
di in green "*** Splitting tests"
}
*set trace on
forvalues j=1/`nbitems' {
tempname estneg`j' estpos`j'
local listitems
forvalues k=1/`nbitems' {
if `j'!=`k' {
local listitems `listitems' ``k''
}
}
qui use `saveraschtest',replace
qui keep if `touse'==1
qui raschtestv7 `listitems' if ``j''==0,test(NONE) meth(cml)
matrix `estneg`j''=r(beta)
local llneg=r(cll)
qui raschtestv7 `listitems' if ``j''==1,test(NONE) meth(cml)
matrix `estpos`j''=r(beta)
local llpos=r(cll)
qui raschtestv7 `listitems',test(NONE) meth(cml)
local llnegpos=r(cll)
local nbcol=colsof(`estneg`j'')
local meanneg=0
local meanpos=0
forvalues k=1/`nbcol' {
local meanneg=`meanneg'+`estneg`j''[1,`k']
local meanpos=`meanpos'+`estpos`j''[1,`k']
}
local meanneg=`meanneg'/`nbitems'
local meanpos=`meanpos'/`nbitems'
forvalues k=1/`nbcol' {
matrix `estneg`j''[1,`k']=`estneg`j''[1,`k']-`meanneg'
matrix `estpos`j''[1,`k']=`estpos`j''[1,`k']-`meanpos'
if "`method'"=="cml" {
matrix `estneg`j''=`estneg`j'',-`meanneg'
matrix `estpos`j''=`estpos`j'',-`meanpos'
}
}
drop _all
qui set obs `=`nbitems'+1'
tempvar neg pos name diag
qui gen `neg'=.
qui gen `pos'=.
qui gen str9 `name'=""
local min=`estneg`j''[1,1]
local max=`estneg`j''[1,1]
forvalues k=1/`=`nbitems'-1' {
qui replace `neg'=`estneg`j''[1,`k'] in `k'
qui replace `pos'=`estpos`j''[1,`k'] in `k'
local min=min(`min',`estneg`j''[1,`k'],`estpos`j''[1,`k'])
local max=max(`max',`estneg`j''[1,`k'],`estpos`j''[1,`k'])
local tmp:word `k' of `listitems'
qui replace `name'="`tmp'" in `k'
}
local min=floor(`min')
local max=floor(`max')+1
qui gen `diag'=.
qui replace `diag'=`min' in `nbitems'
qui replace `diag'=`max' in `=`nbitems'+1'
local Zgr=round(2*(`llneg'+`llpos'-`llnegpos'),0.001)
local Zgr=substr("`Zgr'",1,6)
local pgr=round(1-chi2(`=`nbitems'-1',`Zgr'),0.0001)
local pgr=substr("`pgr'",1,5)
local note="Z=`Zgr', df=`=`nbitems'-1' , p=`pgr'"
if "`filessave'"!=""{
local saving "`dirsave'\\split``j''"
}
if "`v8'"!="" {
graph twoway (scatter `pos' `neg' ,mlabel(`name')) (line `diag' `diag'), ytitle("Positive answer") xtitle("Negative answer") xlabel(`min'(1)`max') ylabel(`min'(1)`max') title(Splitting on ``j'') `draw' legend(off) note("Andersen Z test: `note'") name(split,replace) `draw'
pause
if "`filessave'"!="" {
graph save split `saving' , `replace'
}
}
else {
if "`filessave'"!="" {
local saving "saving(`saving'"
if "`replace'"=="" {
local saving "`saving')"
}
else {
local saving "`saving',replace)"
}
}
qui replace `diag'=`neg' if `diag'==.
graph `pos' `diag' `diag', `saving' c(.l) sy([`name']i) l1title("") l2title("Positive answer") b2title("Negative answer") xlabel(`min'(1)`max') ylabel(`min'(1)`max') title("Splitting on ``j'' (`note')") `draw'
pause
}
}
}
/***********************************************************************************************************
OPTION GRAPH
************************************************************************************************************/
if "`graph'"!=""&"`v8'"!="" {
if "`trace'"!="" {
di in green "*** Graph option"
}
tempvar latent2 tl2 delta2 tlth2 labdelta2 labtl2
drop _all
qui set obs 1001
gen `latent2'=(_n-501)/100
label variable `latent2' "latent trait"
qui gen `tl2'=.
qui gen `labtl2'=""
forvalues i=0/`nbitems' {
*if (`i'!=0&`i'!=`nbitems')|"`method'"!="cml" {
qui replace `tl2'=`nbrealscore`i''/`N' if round(`latent2',0.01)==round(`theta`i'',0.01)
qui replace `labtl2'="`i'" if round(`latent2',0.01)==round(`theta`i'',0.01)
*}
}
qui gen `delta2'=.
qui gen `labdelta2'=""
forvalues i=1/`nbitems' {
qui replace `delta2'=-.05 if round(`latent2',0.01)==round(`beta`i'',0.01)
qui replace `labdelta2'="``i''" if round(`latent2',0.01)==round(`beta`i'',0.01)
}
if "`method'"=="mml"|"`method'"=="gee" {
qui gen `tlth2'=1/(2*_pi*`sig')*exp(-.5*(`latent2'/`sig')^2)
label variable `tlth2' "Theorical distribution"
local graphmml line `tlth2' `latent2'
}
label variable `tl2' "Score"
label variable `delta2' "Items"
local saving "`dirsave'\\graph"
local min=-2
local max=2
forvalues j=1/`nbitems' {
if `beta`j''<`min' {
local min=`beta`j''-.5
}
if `beta`j''>`max'&`beta`j''!=. {
local max=`beta`j''+.5
}
}
if "`method'"=="cml" {
if `theta0'<`min' {
local min=`theta0'-.5
}
if `theta`=`nbitems'-1''>`max' {
local max=`theta`=`nbitems'-1''+.5
}
}
else if "`method'"!="cml" {
if `theta0'<`min'&`theta0'!=. {
local min=`theta0'-.5
}
if `theta`nbitems''>`max'&`theta`nbitems''!=. {
local max=`theta`nbitems''+.5
}
}
local min=floor(`min')
local max=floor(`max')+1
qui su `tl2'
local max2=r(max)
if "`method'"!="cml" {
qui su `tlth2'
local max2=max(`max2',`r(max)')
}
qui replace `latent2'=. if `latent2'<`min'|`latent2'>`max'
if "`v8'"!="" {
graph twoway (scatter `tl2' `latent2',mlabel(`labtl2')) (dropline `delta2' `latent2',mlabel(`labdelta2') mlabposition(6)) (`graphmml'), name(graph,replace) ytitle("") xlabel(`min'(1)`max') ylabel(-.1 0(0.05)`max2') title("Individuals/items representations") `draw'
if "`filessave'"!="" {
graph save graph `saving' , `replace'
}
pause
}
}
else if "`graph'"!=""&"`v8'"=="" {
di in ye "The graph option is not available with Stata 7"
}
/***********************************************************************************************************
COMPARISON OF TWO POPULATION
************************************************************************************************************/
if "`comp'"!=""&"`method'"!="cml" {
di
di _col(4) in green "Comparison of two populations"
di _col(4) "{hline 30}"
di
di _col(4) in green "`comp'==`mincomp':" _col(20) "N=" _col(22) in yellow %7.0f `Nmin' _col(30) in green "mean= " _col(35) in yellow %8.4f `meanmin' _col(45) in green "variance=" _col(55) in yellow %8.4f `varmin'
di _col(4) in green "`comp'==`maxcomp':" _col(20) "N=" _col(22) in yellow %7.0f `Nmax' _col(30) in green "mean= " _col(35) in yellow %8.4f `meanmax' _col(45) in green "variance=" _col(55) in yellow %8.4f `varmax'
di _col(33) in green "Z= " _col(35) in yellow %8.4f `Zcomp' _col(47) in green "pvalue= " _col(57) in yellow %6.4f `pvalue'
}
/***********************************************************************************************************
RETURN
************************************************************************************************************/
if "`trace'"!="" {
di in green "*** Returns"
}
local colnametheta
if "`method'"=="cml" {
forvalues i=1/`=`nbgroups'-1' {
if `effscore`i''!=0 {
local colnametheta `colnametheta' score_`i'
}
}
}
else {
forvalues i=0/`nbgroups' {
if `effscore`i''!=0 {
local colnametheta `colnametheta' score_`i'
}
}
}
return clear
if `nbitems'>=3&"`test'"!="NONE" {
matrix colnames `globalfit'=`namewp' df p
matrix rownames `globalfit'=`method'
matrix rownames `itemfit'=`varlist'
matrix roweq `itemfit'=`method'
if "`method'"=="cml" {
matrix colnames `itemfit'=`namewp' df p outfit infit U
matrix rownames `AndersenZ'=`method'
matrix colnames `AndersenZ'=Z df p
return matrix AndersenZ=`AndersenZ'
}
else {
matrix colnames `itemfit'=`namewp' df p outfit infit
}
return matrix itemFit=`itemfit'
return matrix globalFit=`globalfit'
*set trace off
}
matrix colnames `theta'=`colnametheta'
matrix rownames `theta'=theta
return matrix theta `theta'
matrix colnames `sdtheta'=`colnametheta'
matrix rownames `sdtheta'=`colnametheta'
return matrix Vartheta `sdtheta'
local varlist2
matrix coleq `beta'=`method'
matrix coleq `Vbeta'=`method'
matrix roweq `Vbeta'=`method'
if "`method'"=="cml" {
forvalues i=1/`=`nbitems'-1' {
local varlist2 `varlist2' ``i''
}
return scalar cll=`ll'
return scalar ll=`globalll'
local AIC=-2*`globalll'+2*(`nbitems'-1)
}
else {
return scalar ll=`ll'
local varlist2 `varlist'
return scalar sigma=`sig'
return scalar sesigma=`sesig'
local AIC=-2*`ll'+2*(`nbitems'+1)
}
matrix colnames `beta'=`varlist2'
matrix rownames `beta'=beta
return matrix beta `beta'
matrix colnames `Vbeta'=`varlist2'
matrix rownames `Vbeta'=`varlist2'
return matrix Varbeta `Vbeta'
return scalar AIC=`AIC'
return scalar N=`nbind'
if "`pause'"!="" {
pause off
}
drop _all
restore,not
use `saveraschtest'
/***********************************************************************************************************
CREATE EVENTUAL NEW VARIABLES
************************************************************************************************************/
if "`genfit'"!=""|"`genlt'"!=""|"`genscore'"!="" {
tempname genlt2 genscore2 outfit2 infit2
qui gen `score'=0
forvalues i=1/`nbitems' {
qui replace `score'=`score'+``i''
}
qui gen `genlt2'=.
forvalues i=0/`nbitems' {
qui replace `genlt2'=`theta`i'' if `score'==`i'
}
if "`genscore'"!="" {
qui gen `genscore'=`score'
}
if "`genlt'"!="" {
qui gen `genlt'=`genlt2'
}
if "`genfit'"!="" {
local outfit:word 1 of `genfit'
local infit:word 2 of `genfit'
qui gen `outfit'=0
qui gen `infit'=0
tempname infit1 infit2
qui gen `infit1'=0
qui gen `infit2'=0
forvalues j=1/`nbitems' {
tempname pi`j'
qui gen `pi`j''=exp(`genlt2'-`beta`j'')/(1+exp(`genlt2'-`beta`j''))
qui gen `outfit'``j''=(``j''-`pi`j'')^2/(`pi`j''*(1-`pi`j''))
qui replace `infit1'=`infit1'+(``j''-`pi`j'')^2
qui replace `infit2'=`infit2'+(`pi`j''*(1-`pi`j''))
qui replace `outfit'=`outfit'+`outfit'``j''/`nbitems'
}
qui replace `infit'=`infit1'/`infit2'
}
}
if "`trace'"!=""|"`time'"!="" {
capture qui elapse `st'
di in green "** Time : " in yellow "$S_elap " in green "seconds"
}
end