############################################################################## #----------------------------------------------------------------------------# ################################## LIBRARIES ################################# #----------------------------------------------------------------------------# ############################################################################## library(TAM) library(doMC) library(parallel) library(pbmcapply) library(funprog) library(dplyr) library(readxl) library(furrr) library(tibble) lastChar <- function(str){ substr(str, nchar(str), nchar(str)) } ############################################################################## #----------------------------------------------------------------------------# ################################### RESALI ################################### #----------------------------------------------------------------------------# ############################################################################## generate_resali <- function(scenario=NULL,grp=NULL) { scen <- as.numeric(gsub("[A,B,C,_]","",substr(scenario,0,3))) if (substr(scenario,start=nchar(scenario)-1,stop=nchar(scenario))=="50") { N <- 50 } if (substr(scenario,start=nchar(scenario)-2,stop=nchar(scenario))=="300") { N <- 300 } dat <- read.csv(paste0('/home/corentin/Documents/These/Recherche/ROSALI-SIM/Data/N',N,'/scenario_',scenario,'.csv')) if (scen%in%c(4,16)) { res <- resali(df=dat[dat$replication==1,],items = seq(1,7),group=grp,verbose=FALSE) df_res <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA), dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA), dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA), dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA), dif.detect.5=ifelse(length(res$dif.items)>=5,res$dif.items[5],NA), dif.detect.6=ifelse(length(res$dif.items)>=6,res$dif.items[6],NA), dif.detect.7=ifelse(length(res$dif.items)>=7,res$dif.items[7],NA), dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA), dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA), dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA), dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA), dif.detect.unif.5=ifelse(length(res$uniform)>=5,res$uniform[5],NA), dif.detect.unif.6=ifelse(length(res$uniform)>=6,res$uniform[6],NA), dif.detect.unif.7=ifelse(length(res$uniform)>=7,res$uniform[7],NA), N=N, nbdif=ifelse(scen==16,2,0), true.dif.1=ifelse(scen==16,unique(dat[dat$replication==1,]$dif1),NA), true.dif.2=ifelse(scen==16,unique(dat[dat$replication==1,]$dif2),NA) ) for (k in 2:1000) { if (k%%100==0) { cat(paste0('N=',k,'/1000\n')) } res <- resali(df=dat[dat$replication==k,],items = seq(1,7),group=grp,verbose=FALSE) df_res2 <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA), dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA), dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA), dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA), dif.detect.5=ifelse(length(res$dif.items)>=5,res$dif.items[5],NA), dif.detect.6=ifelse(length(res$dif.items)>=6,res$dif.items[6],NA), dif.detect.7=ifelse(length(res$dif.items)>=7,res$dif.items[7],NA), dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA), dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA), dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA), dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA), dif.detect.unif.5=ifelse(length(res$uniform)>=5,res$uniform[5],NA), dif.detect.unif.6=ifelse(length(res$uniform)>=6,res$uniform[6],NA), dif.detect.unif.7=ifelse(length(res$uniform)>=7,res$uniform[7],NA), N=N, nbdif=ifelse(scen==16,2,0), true.dif.1=ifelse(scen==16,unique(dat[dat$replication==k,]$dif1),NA), true.dif.2=ifelse(scen==16,unique(dat[dat$replication==k,]$dif2),NA)) df_res <- rbind(df_res,df_res2) } } else if (scen%in%c(2,8)) { res <- resali(df=dat[dat$replication==1,],items = seq(1,4),group=grp,verbose=FALSE) df_res <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA), dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA), dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA), dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA), dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA), dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA), dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA), dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA), N=N, nbdif=ifelse(scen==8,1,0), true.dif=ifelse(scen==8,unique(dat[dat$replication==1,]$dif1),NA) ) for (k in 2:1000) { if (k%%100==0) { cat(paste0('N=',k,'/1000\n')) } res <- resali(df=dat[dat$replication==k,],items = seq(1,4),group=grp,verbose=FALSE) df_res2 <- data.frame(dif.detect.1=ifelse(length(res$dif.items)>=1,res$dif.items[1],NA), dif.detect.2=ifelse(length(res$dif.items)>=2,res$dif.items[2],NA), dif.detect.3=ifelse(length(res$dif.items)>=3,res$dif.items[3],NA), dif.detect.4=ifelse(length(res$dif.items)>=4,res$dif.items[4],NA), dif.detect.unif.1=ifelse(length(res$uniform)>=1,res$uniform[1],NA), dif.detect.unif.2=ifelse(length(res$uniform)>=2,res$uniform[2],NA), dif.detect.unif.3=ifelse(length(res$uniform)>=3,res$uniform[3],NA), dif.detect.unif.4=ifelse(length(res$uniform)>=4,res$uniform[4],NA), N=N, nbdif=ifelse(scen==8,1,0), true.dif=ifelse(scen==8,unique(dat[dat$replication==k,]$dif1),NA)) df_res <- rbind(df_res,df_res2) } } return(df_res) } results <- c(sapply(c(2,4),function(x) paste0(x,c('A','B','C'))),sapply(8,function(x) paste0(x,c('A','B','C')))) results2 <- c(sapply(16,function(x) paste0(x,c('A','B','C')))) results <- c(sapply(c(50,300),function(x) paste0(results,'_',x))) results2 <- c(sapply(c(50,300),function(x) paste0(results2,'_',x))) results <- sort(results) results2 <- sort(results2) results <- c(results,results2) for (r in results) { cat(paste0(r,"\n")) cat(paste0("-------------------------------------------","\n")) write.csv(generate_resali(r,"TT"),paste0("/home/corentin/Documents/These/Recherche/ROSALI-SIM/Analysis/resali/",r,".csv")) cat(paste0("-------------------------------------------","\n")) } ############################################################################## #----------------------------------------------------------------------------# ########################### AGGREGATION DIF MATRICES ######################### #----------------------------------------------------------------------------# ############################################################################## #### Create data.frame results <- c(sapply(c(2,4),function(x) paste0(x,c('A','B','C'))),sapply(8,function(x) paste0(x,c('A','B','C')))) results2 <- c(sapply(16,function(x) paste0(x,c('A','B','C')))) results <- c(sapply(c(50,300),function(x) paste0(results,'_',x))) results2 <- c(sapply(c(50,300),function(x) paste0(results2,'_',x))) results <- sort(results) results2 <- sort(results2) results <- c(results,results2) results <- c(sapply(c("noBF","noLRT","noLRT_noBF","original","resali"),function(x) paste0(results,'_',x))) #### Compiler function compile_simulation2 <- function(scenario) { name <- as.numeric(gsub("[^0-9.-]", "", substr(scenario,start=0,stop=2))) if (substr(scenario,start=nchar(scenario)-5,stop=nchar(scenario))=="0_noBF") { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/ROSALI-SIM/Analysis/noBF/',scenario,'.xls')) s$version <- "noBF" } if (substr(scenario,start=nchar(scenario)-4,stop=nchar(scenario))=="noLRT") { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/ROSALI-SIM/Analysis/noLRT/',scenario,'.xls')) s$version <- "noLRT" } if (substr(scenario,start=nchar(scenario)-9,stop=nchar(scenario))=="noLRT_noBF") { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/ROSALI-SIM/Analysis/noLRTnoBF/',scenario,'.xls')) s$version <- "noLRTnoBF" } if (substr(scenario,start=nchar(scenario)-7,stop=nchar(scenario))=="original") { s <- read_excel(paste0('/home/corentin/Documents/These/Recherche/ROSALI-SIM/Analysis/original/',scenario,'.xls')) s$version <- "original" } if (substr(scenario,start=nchar(scenario)-5,stop=nchar(scenario))=="resali") { s <- read.csv(paste0('/home/corentin/Documents/These/Recherche/ROSALI-SIM/Analysis/resali/',gsub("_resali","",scenario),'.csv'),row.names = 1,header = T) if (as.numeric(gsub("[A-Z]","", substr(scenario,start=0,stop=2)))%in%c(2,4)) { s <- s[,-c(ncol(s))] } if (as.numeric(gsub("[A-Z]","", substr(scenario,start=0,stop=2)))%in%c(4)) { s <- s[,-c(ncol(s))] } if (as.numeric(gsub("[A-Z]","", substr(scenario,start=0,stop=2)))%in%c(2,8)) { s <- add_column(s,J=4,.after='N') } if (as.numeric(gsub("[A-Z]","", substr(scenario,start=0,stop=2)))%in%c(4,16)) { s <- add_column(s,J=7,.after='N') } s$version <- "resali" } name <- gsub("_", "", substr(scenario,start=0,stop=3)) if (as.numeric(gsub("[A,B,C]","",name))==2){ colnames(s) <- c("dif.detect.1","dif.detect.2","dif.detect.3","dif.detect.4", "dif.detect.unif.1","dif.detect.unif.2","dif.detect.unif.3","dif.detect.unif.4", "N","J","nb.dif","version") s$dif.detected <- sapply(1:1000,function(x) any(!is.na(s[x,1:4]))) s$prop.perfect <- NA s$prop.flexible <- NA s$prop.moreflexible <- NA } if (as.numeric(gsub("[A,B,C]","",name))==4){ colnames(s) <- c("dif.detect.1","dif.detect.2","dif.detect.3","dif.detect.4", "dif.detect.5","dif.detect.6","dif.detect.7", "dif.detect.unif.1","dif.detect.unif.2","dif.detect.unif.3","dif.detect.unif.4", "dif.detect.unif.5","dif.detect.unif.6","dif.detect.unif.7", "N","J","nb.dif","version") s$dif.detected <- sapply(1:1000,function(x) any(!is.na(s[x,1:7]))) s$prop.perfect <- NA s$prop.flexible <- NA s$prop.moreflexible <- NA } if (as.numeric(gsub("[A,B,C]","",name))==8){ colnames(s) <- c("dif.detect.1","dif.detect.2","dif.detect.3","dif.detect.4", "dif.detect.unif.1","dif.detect.unif.2","dif.detect.unif.3","dif.detect.unif.4", "N","J","nb.dif","true.dif","version") s$dif.detected <- sapply(1:1000,function(x) any(!is.na(s[x,1:4]))) s$perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,1:4]))==1,s[x,"dif.detect.unif.1"]==1 & s[x,which(sapply(1:4,function(y) !is.na(s[x,y])))]==s[x,"true.dif"],0) ) s$prop.perfect <- mean(s$perfect.detection) s$flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,1:4]))==1,s[x,which(sapply(1:4,function(y) !is.na(s[x,y])))]==s[x,"true.dif"],0) ) s$prop.flexible <- mean(s$flexible.detect) s$moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,1:4]))!=0,s[x,"true.dif"]%in%c(s[x,which(sapply(1:4,function(y) !is.na(s[x,y])))]),0) ) s$prop.moreflexible <- mean(s$moreflexible.detect) } if (as.numeric(gsub("[A,B,C]","",name))==16){ colnames(s) <- c("dif.detect.1","dif.detect.2","dif.detect.3","dif.detect.4", "dif.detect.5","dif.detect.6","dif.detect.7", "dif.detect.unif.1","dif.detect.unif.2","dif.detect.unif.3","dif.detect.unif.4", "dif.detect.unif.5","dif.detect.unif.6","dif.detect.unif.7", "N","J","nb.dif","true.dif.1","true.dif.2","version") s$dif.detected <- sapply(1:1000,function(x) any(!is.na(s[x,1:7]))) perfect.detection <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,1:7]))==2,s[x,"dif.detect.unif.1"]==1 & s[x,"dif.detect.unif.2"]==1 & s[x,which(sapply(1:7,function(y) !is.na(s[x,y])))[1]]%in%c(s[x,c("true.dif.1","true.dif.2")]) & s[x,which(sapply(1:7,function(y) !is.na(s[x,y])))[2]]%in%c(s[x,c("true.dif.1","true.dif.2")]) ,0) ) s$prop.perfect <- mean(perfect.detection) s$flexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,1:7]))==2,s[x,which(sapply(1:7,function(y) !is.na(s[x,y])))[1]]%in%c(s[x,c("true.dif.1","true.dif.2")]) & s[x,which(sapply(1:7,function(y) !is.na(s[x,y])))[2]]%in%c(s[x,c("true.dif.1","true.dif.2")]),0 )) s$prop.flexible <- mean(s$flexible.detect) s$moreflexible.detect <- sapply(1:1000,function(x) ifelse(sum(!is.na(s[x,1:7]))!=0,s[x,"true.dif.1"]%in%c(s[x,which(sapply(1:7,function(y) !is.na(s[x,y])))]) & s[x,"true.dif.2"]%in%c(s[x,which(sapply(1:7,function(y) !is.na(s[x,y])))]),0) ) s$prop.moreflexible <- mean(s$moreflexible.detect) } d <- data.frame(scenario=name, version=unique(s$version), N=unique(s$N), J=unique(s$J), M=4, nb.dif=unique(s$nb.dif), prop.dif.detect=mean(s$dif.detected), prop.perfect=ifelse(substr(name,start=nchar(name),stop=nchar(name))!="D",unique(s$prop.perfect),NA), prop.flexible=ifelse(substr(name,start=nchar(name),stop=nchar(name))!="D",unique(s$prop.flexible),NA), prop.moreflexible=ifelse(substr(name,start=nchar(name),stop=nchar(name))!="D",unique(s$prop.moreflexible),NA) ) return(d) } #### Compiled results res.dat.dif <- compile_simulation2("2A_300_noBF") for (x in results[seq(2,length(results))]) { y <- compile_simulation2(x) res.dat.dif <- bind_rows(res.dat.dif,y) } res.dat.dif ############################################################################## #----------------------------------------------------------------------------# ############################### PLOTS OF RESULTS ############################# #----------------------------------------------------------------------------# ############################################################################## # False positives plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif==0 & res.dat.dif$version=='original',]$prop.dif.detect) ) ) plot(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,1),lty=1,pch=3,xlab='N',ylab="Proportions of scenarios where DIF was detected") lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1) title('Proportion of DIF detection in scenarios without DIF') plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif==0 & res.dat.dif$version=='noBF',]$prop.dif.detect) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="blue",pch=2) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="blue") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif==0 & res.dat.dif$version=='noLRTnoBF',]$prop.dif.detect) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="red",pch=4) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="red") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif==0 & res.dat.dif$version=='noLRT',]$prop.dif.detect) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="green",pch=5) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="green") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif==0 & res.dat.dif$version=='resali',]$prop.dif.detect) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="purple",pch=6) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="purple") legend(x='topleft',legend=c('original','no Bonferroni correction',"no LRT","no LRT and no Bonferroni",'Residuals'), col=c('black',"blue","green","red",'purple'),lty=c(1,1,1,1,1),pch=c(3,2,4,5,6)) par(mfrow=c(2,2)) # Perfect detection plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='original',]$prop.perfect) ) ) plot(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,1),lty=1,pch=3,xlab='N',ylab="Proportions of scenarios with perfect DIF detection") lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1) title('Proportion of perfect DIF detection in scenarios with DIF') plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noBF',]$prop.perfect) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="blue",pch=2) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="blue") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noLRTnoBF',]$prop.perfect) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="red",pch=4) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="red") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noLRT',]$prop.perfect) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="green",pch=5) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="green") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='resali',]$prop.perfect) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="purple",pch=6) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="purple") legend(x='topleft',legend=c('original','no Bonferroni correction',"no LRT","no LRT and no Bonferroni",'Residuals'), col=c('black',"blue","green","red",'purple'),lty=c(1,1,1,1,1),pch=c(3,2,4,5,6)) # Flexible detection plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='original',]$prop.flexible) ) ) plot(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,1),lty=1,pch=3,xlab='N',ylab="Proportions of scenarios with flexible DIF detection") lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1) title('Proportion of flexible DIF detection in scenarios with DIF') plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noBF',]$prop.flexible) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="blue",pch=2) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="blue") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noLRTnoBF',]$prop.flexible) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="red",pch=4) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="red") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noLRT',]$prop.flexible) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="green",pch=5) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="green") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='resali',]$prop.flexible) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="purple",pch=6) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="purple") legend(x='topleft',legend=c('original','no Bonferroni correction',"no LRT","no LRT and no Bonferroni",'Residuals'), col=c('black',"blue","green","red",'purple'),lty=c(1,1,1,1,1),pch=c(3,2,4,5,6)) # Most flexible detection plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='original',]$prop.moreflexible) ) ) plot(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,1),lty=1,pch=3,xlab='N',ylab="Proportions of scenarios with most flexible DIF detection") lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1) title('Proportion of most flexible DIF detection in scenarios with DIF') plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noBF',]$prop.moreflexible) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="blue",pch=2) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="blue") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noLRTnoBF',]$prop.moreflexible) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="red",pch=4) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="red") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='noLRT',]$prop.moreflexible) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="green",pch=5) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="green") plot.dat <- data.frame(N=c(50,300), prop.dif.detect=sapply(c(50,300),function(x) mean(res.dat.dif[res.dat.dif$N==x & res.dat.dif$nb.dif!=0 & res.dat.dif$version=='resali',]$prop.moreflexible) ) ) points(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="purple",pch=6) lines(plot.dat$prop.dif.detect~plot.dat$N,ylim=c(0,0.05),lty=1,col="purple") legend(x='topleft',legend=c('original','no Bonferroni correction',"no LRT","no LRT and no Bonferroni",'Residuals'), col=c('black',"blue","green","red",'purple'),lty=c(1,1,1,1,1),pch=c(3,2,4,5,6))