{smcl} {hline} help for {hi:espoisson} {right:(SJ4-1: st0057)} {hline} {title:FIML endogenous switching Poisson model} {p 8 13 2}{cmd:espoisson}{space 2}{it:depvar} [{it:varlist}] [{cmd:if} {it:exp}] [{cmd:in} {it:range}] {cmd:,} {cmdab:ed:ummy(}{it:varname}{cmd:)} [ {cmdab:s:witch(}{it:varlist}{cmd:)} {cmdab:q:uadrature(}{it:#}{cmd:)} {cmd:rho0(}{it:#}{cmd:)} {cmd:sigma0(}{it:#}{cmd:)} {cmd:exs} {it:maximize_options}] {p 8 8 2}Note: the vector {it:varlist} should include the switch variable (endogenous dummy) as one of its elements.{p_end} {p 4 4 2} The syntax of {help predict} after {cmd:espoisson} is {p 8 16 2}{cmd:predict} {it:newvar} [{cmd:if} {it:exp}] [{cmd:in} {it:range}] [{cmd:,} n ] {p 4 4 2}where, {p 8 21 2}{cmd:n}{space 9}predicted number of events (default){p_end} {title:Description} {p 4 4 2}{cmd:espoisson} fits a FIML endogenous switching Poisson model. An endogenous dummy variable is present in the vector of explanatory variables, and there is unobserved individual heterogeneity. The endogenous dummy variable indicates the realization of two different regimes. The endogenous switching model corrects for the simultaneous equation bias that the presence of the endogenous dummy may induce in a standard exogenous-switch count model. {p 4 4 2}This program uses {cmd:ml d0} method. {title:Options} {p 4 8 2}{cmd:edummy(}{it:varname}{cmd:)} (required) specifies the endogenous dummy variable. {p 4 8 2} {cmd:switch(}{it:varlist}{cmd:)} specifies explanatory variables for the index function governing the endogenous dummy. If {cmd:switch()} is unspecified then a constant-only model is fitted. {p 4 8 2}{cmd:quadrature(}{it:#}{cmd:)} specifies the number of quadrature points for the Gauss-Hermite integral. Six points are used by default. {p 4 8 2}{cmd:rho0(}{it:#}{cmd:)} specifies initial value for rho. If unspecified, {cmd:rho0()}=0.01. {p 4 8 2}{cmdab:sigma0(}{it:#}{cmdab:)} specifies initial value for sigma. If unspecified, {cmd:sigma0()}=1.0. {p 4 8 2}{cmdab:exs} causes the program to fit an exogenous switching model. {title:Examples} {p 8 12 2}{cmd:. espoisson y x1 x2, ed(x2) s(x1) q(16)}{p_end} {p 8 12 2}{cmd:. predict yhat, n}{p_end} {p 8 12 2}{cmd:. espoisson y x1 x2, ed(x2) s(x1) q(16) exs}{p_end} {p 8 12 2}{cmd:. predict yhat, n}{p_end} {title:Author} {p 4 8 2}{bf: Alfonso Miranda}{p_end} {p 4 8 2} Economics Department, Warwick University, CV4 7AL, UK.{p_end} {p 4 8 2}E-mail: Alfonso.Miranda-Caso-Luengo@warwick.ac.uk{p_end} {title:Also see} {p 4 14 2}Manual: {hi:[U] 23 Estimation and post-estimation commands},{p_end} {p 13 13 2}{hi:[U] 29 Overview of model estimation in Stata},{p_end} {p 13 13 2}{hi:[R] poisson} {p 4 13 2}Online: help for {help ml}, {help glm}, {help nbreg}, {help svypois}, {help xtpois}, {help zip}