************************************************************************************************************ * Stata program : mmsrm * Estimate the parameters of the Multidimensional Marginally Sufficient Rasch Model (MMSRM) * Release 2 : May 26, 2004 * * Historic : * Version 1 (May 14, 2004) [Jean-Benoit Hardouin] * * Jean-benoit Hardouin, Regional Health Observatory of Orléans - France * jean-benoit.hardouin@neuf.fr * * Use the Stata programs raschtest and gammasym who can be download on http://anaqol.free.fr * Use the Stata program gllamm who can be obtained by : ssc install gllamm * News about this program :http://anaqol.free.fr * * All the necessary programs on the FreeIRT Project website : http://freeirt.free.fr * * Copyright 2004 Jean-Benoit Hardouin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ************************************************************************************************************ program define mmsrm,eclass version 8.0 syntax varlist(min=3 numeric) [, PARTition(numlist) NODETails TRAce] preserve local nbitems : word count `varlist' if "`part'"=="" { local part=`nbitems' } local nbpart:word count `partition' if `nbpart'== 1 { raschtest `varlist', notest mml } else if `nbpart'>2 { di in red "The mmsrm module do not run models with more than two dimensions for the moment." } if `nbpart'!=2 { exit } local comptitems=0 tokenize `varlist' forvalues i=1/`nbpart' { local firstpart`i'=`comptitems'+1 local part`i': word `i' of `partition' local set`i' local comptitems=`comptitems'+`part`i'' forvalues j=`firstpart`i''/`comptitems' { local set`i' "`set`i'' ``j''" } } if `comptitems'<`nbitems' { di in error "Your partition describe less items than the number of items defined in the varlist." di in error "Correct your code." exit } if `comptitems'>`nbitems' { di in error "Your partition describe more items than the number of items defined in the varlist." di in error "Correct your code." exit } forvalues i=1/`nbpart' { if "`details'"=="" { di in green "Estimation of the difficulty parameters of the dimension `i'." } *set trace on if `part`i''>1 { qui raschtest `set`i'',mml notest tempname beta`i' Varbeta`i' matrix `beta`i''=e(beta) matrix `Varbeta`i''=e(Varbeta) local sigma`i'=e(sigma) forvalues j=1/`part`i'' { local parambeta`=`firstpart`i''+`j'-1'=`beta`i''[1,`j'] } } else { qui count local N=r(N) qui count if ``firstpart`i'''==1 local pos=r(N) local parambeta`firstpart`i''=-log(`pos'/(`N'-`pos')) local sigma`i'=0 } } if "`details'"=="" { di di in green "Estimation of the parameters of the distribution of the multidimensional latent trait." di in green "This process could be long to run. Be patient !" } *set trace on tempfile savemmsrm qui save `savemmsrm' keep `varlist' tempname rep id item offset forvalues i=1/`nbitems' { rename ``i'' `rep'`i' } gen `id'=_n qui reshape long `rep', i(`id') j(`item') gen `offset'=0 label variable `offset' "offset" forvalues i=1/`nbitems' { qui replace `offset'=-`parambeta`i'' if `item'==`i' } local eqs forvalues i=1/`nbpart' { tempname B`i' gen `B`i''=0 eq sc`i':`B`i'' local eqs `eqs' sc`i' forvalues j=`firstpart`i''/`=`firstpart`i''+`part`i''-1' { qui replace `B`i''=1 if `item'==`j' } } label variable `rep' "response" label variable `id' "identifiant" tempname first local four=substr("`id'",1,3) matrix define `first'=(0,`sigma1',`sigma2',0) matrix colnames `first'=`rep':_cons `four'1_1:`B1' `four'1_2:`B2' `four'1_2_1:_cons if "`trace'"!="" { local quigllamm } else { local quigllamm qui } `quigllamm' gllamm `rep', from(`first') link(logit) fam(bin) i(`id') offset(`offset') nrf(`nbpart') eqs(`eqs') nip(5) dots `trace' local AIC=-2*e(ll)+2*(`nbitems'+`nbpart'*(`nbpart'+1)/2) local ll=e(ll) tempname cosig varsig L M matrix `cosig'=e(b) matrix `varsig'=e(V) matrix `L'=e(chol) matrix `M'=`L'*`L'' forvalues i=1/`nbpart'{ } if `nbpart'==2 { local var1=`M'[1,1] local var2=`M'[2,2] local sevar1=(sqrt(`varsig'[2,2])*2*sqrt(`var1')) local sevar2=. local cov12=`M'[1,2] local secov=. di di in green _col(4) "Log-likelihood:" in yellow %-12.4f `ll' di noi di in green _col(4) "Items" _col(16) "Parameters" _col(29) "std Err." di in green _col(4) "{hline 33}" forvalues i=1/`part1' { if `part1'!=1 { noi di in yellow _col(4) "``i''" _col(18) %8.5f `beta1'[1,`i'] _col(30) %6.5f sqrt(`Varbeta1'[`i',`i']) } else { noi di in yellow _col(4) "``i''" _col(18) %8.5f `parambeta`firstpart1'' _col(30) "." } } di in green _col(4) "{hline 33}" forvalues i=`firstpart2'/`=`part1'+`part2'' { if `part2'!=1 { noi di in yellow _col(4) "``i''" _col(18) %8.5f `beta2'[1,`=`i'-`part1''] _col(30) %6.5f sqrt(`Varbeta2'[`=`i'-`part1'',`=`i'-`part1'']) } else { noi di in yellow _col(4) "``i''" _col(18) %8.5f `parambeta`firstpart2'' _col(30) "." } } di in green _col(4) "{hline 33}" forvalues i=1/`nbpart' { noi di in yellow _col(4) "Var`i'" _col(18) %8.5f `var`i'' /*_col(30) %6.5f `sevar`i''*/ } di in green _col(4) in yellow "cov12" _col(18) %8.5f `cov12' /*_col(30) %6.5f `secov'*/ di in green _col(4) "{hline 33}" } if "`trace'"=="" { di in green "Add the trace option to obtain the standard errors of the elements" di in green "of the covariance matrix of the latent traits" } ereturn clear ereturn scalar AIC=`AIC' ereturn scalar ll=`ll' ereturn scalar dimension=`nbpart' forvalues i=1/`nbpart' { ereturn scalar nbitems`i'=`part`i'' ereturn local set`i' `set`i'' if `part`i''>1 { ereturn matrix beta`i'=`beta`i'' ereturn matrix Varbeta`i' `Varbeta`i'' } else { ereturn scalar beta`i'=`parambeta`firstpart`i''' } } *ereturn matrix cosig=`cosig' *ereturn matrix varsig=`varsig' tempname matrixsigma matrix `matrixsigma'=(`sigma1',`sigma2',`cov12') matrix colnames `matrixsigma'= sigma1 sigma2 cov12 ereturn matrix sigma=`matrixsigma' drop _all qui use `savemmsrm' end