*! version 2 15jan2013 ************************************************************************************************************ * gausshermite : Estimate an integral of the form |f(x)g(x/mu,sigma)dx or f(x,y)g(x,y/mu,Sigma)dxdy where g(x/mu,sigma) is the distribution function * of the gaussian distribution of mean mu and variance sigma^2 and g(x,y/mu,Sigma) is the distribution function * of the bivariate normal distribution of mean mu and covariance matrix Sigma by Gauss Hermite quadratures * * Version 1 : May 5, 2005 (Jean-Benoit Hardouin) * Version 1.1: June 14, 2012 /*name option*/ (Jean-Benoit Hardouin) * Version 2: January 15, 2013 /*bivariate normal distribution*/ (Jean-Benoit Hardouin, Mohand-Larbi Feddag, Myriam Blanchin) * * Jean-Benoit Hardouin, jean-benoit.hardouin@univ-nantes.fr * EA 4275 "Biostatistics, Pharmacoepidemiology and Subjectives Measures in Health" * Faculty of Pharmaceutical Sciences - University of Nantes - France * http://www.sphere-nantes.org * * News about this program : http://anaqol.free.fr * FreeIRT Project : http://freeirt.free.fr * * Copyright 2005, 2013 Jean-Benoit Hardouin, Mohand-Larbi Feddag, Myriam Blanchin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ************************************************************************************************************ program define gausshermite,rclass version 7 syntax anything [, Sigma(real -1) Var(string) MU(string) Nodes(integer 12) Display Name(string)] tempfile gauss qui capture save `gauss',replace local save=0 if _rc==0 { qui save `gauss',replace local save=1 } tokenize `anything' drop _all tempname mean variance C qui set obs `=`nodes'*`nodes'' if "`name'"=="" { if `sigma'!=-1{ if "`var'"==""{ local name x local nb=1 } else{ di in red "{p}Please fill in the {hi:name} option{p_end}" error 198 exit } } else{ if "`var'"!=""{ local name1 x1 local name2 x2 local nb=2 } else{ di in red "{p}Please fill in the {hi:name} option{p_end}" error 198 exit } } } else { local nb=wordcount("`name'") if `nb'==2{ local name1=word("`name'",1) local name2=word("`name'",2) } } if `nb'==2{ capture confirm matrix `var' if !_rc{ if colsof(`var')==2 & rowsof(`var')==2{ matrix `C'=cholesky(`var') } else{ di in red "{p}The covariance matrix in the {hi:var} option should be a 2x2 matrix for a bivariate distribution{p_end}" error 198 exit } } else{ matrix `variance'=(1,0\0,1) matrix `C'=cholesky(`variance') } } else{ if `sigma'==-1{ local sig=1 } else{ local sig=`sigma' } } capture confirm matrix `mu' if !_rc{ if colsof(`mu')==1 & rowsof(`mu')==1{ local `mean'=`mu'[1,1] } else{ matrix `mean'=`mu' } } else{ if "`mu'"==""{ if `nb'==1{ local `mean'=0 } else{ matrix `mean'=(0,0) } } else{ local `mean'=`mu' } } tempname noeuds poids qui ghquadm `nodes' `noeuds' `poids' if `nb'==1{ qui gen `name'=. qui gen poids=. forvalues i=1/`nodes' { qui replace `name'=`noeuds'[1,`i'] in `i' qui replace poids=`poids'[1,`i'] in `i' } qui replace `name'=`name'*(sqrt(2)*`sig')+``mean'' qui gen f=poids/sqrt(_pi)*(`1') *list `name' poids f in 1/5 } else{ forvalues i=1/`nb'{ qui gen `name`i''=. qui gen poids`i'=. } local line=1 forvalues i=1/`nodes' { forvalues j=1/`nodes' { qui replace `name1'=`noeuds'[1,`i'] *(sqrt(2)*`C'[1,1])+`mean'[1,1] in `line' qui replace `name2'=`noeuds'[1,`i'] *(sqrt(2)*`C'[2,1])+`noeuds'[1,`j'] *(sqrt(2)*`C'[2,2])+`mean'[1,2] in `line' qui replace poids1=`poids'[1,`i'] in `line' qui replace poids2=`poids'[1,`j'] in `line' local ++line } } qui gen f=poids1*poids2*(`1')/(_pi) *list `name1' `name2' poids1 poids2 f in 10/20 } qui su f return scalar int=r(sum) if "`display'"!="" { di in green "int_R (`1')g(`name'/sigma=`sig')d`name'=" in yellow %12.8f `r(sum)' } drop _all if `save'==1 { qui use `gauss',clear } end