*! version 2.4 june2020 *! Myriam Blanchin - Priscilla Brisson ************************************************************************************************************ * ROSALI: RespOnse-Shift ALgorithm at Item-level * Response-shift detection based on Rasch models family * * Version 1 : December 21, 2016 (Myriam Blanchin) /*rspcm122016*/ * Version 1.1 : October 13, 2017 (Myriam Blanchin) /*option: MODA, automatic recoding of unused response categories*/ * Version 2 : April, 2018 (Myriam Blanchin - Priscilla Brisson) /*option: GROUP, dichotomous group variable*/ * Version 2.1 : October, 2018 (Myriam Blanchin - Priscilla Brisson) /* Version 1.1 + Version 2 */ * Version 2.2 : February, 2019 (Priscilla Brisson) /* option nodif, optimization */ * Version 2.3 : December, 2019 (Priscilla Brisson) /* option detail, + petites corrections */ * Version 2.4 : June, 2020 (Myriam Blanchin) /* debug option detail + step C, modifs sorties et help */ * * Myriam Blanchin, SPHERE, Faculty of Pharmaceutical Sciences - University of Nantes - France * myriam.blanchin@univ-nantes.fr * * Priscilla Brisson, SPHERE, Faculty of Pharmaceutical Sciences - University of Nantes - France * priscilla.brisson@univ-nantes.fr * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ************************************************************************************************************/ program define rosali_nolrt_nobf, rclass timer clear 1 timer on 1 syntax varlist(min=2 numeric) [if] [,GROUP(varlist) NODIF PRO DETail] preserve version 15 tempfile saverspcm capture qui save `saverspcm',replace local save1=_rc if "`if'"!="" { qui keep `if' } if "`pro'" != "" { di "START" } /**************************************************************************/ set more off set matsize 5000 constraint drop _all local gp "`group'" tokenize `varlist' local nbitems:word count `varlist' /* Vérif nb d'items pair */ local mod=mod(`nbitems',2) if `mod'!=0 { di as error "You must enter an even number of items : the first half of the items represents the items at time 1 and the second half the items at time 2" error 198 exit } local nbitems=`nbitems'/2 if "`group'"=="" & "`nodif'"!="" { di as error "nodif can only be used with the group option ({hi:nodif} option). Please correct this option." error 198 exit } local nbc: word count `group' if `nbc' >= 2 { di as error "Only one variable can be used for group option ({hi:group} option). Please correct this option." error 198 exit } /* Vérif qu'il y a 2 groupes si l'option groupe est choisie */ if "`group'"!="" { qui tab `group' local nbgrp = r(r) if `nbgrp' != 2 { di as error "Only 2 groups are possible for the group option ({hi:group} option). Please correct this option." error 420 exit } } /* recoder la variable de groupe en 0, 1*/ if "`group'"!="" { qui tab `gp', matrow(rep) qui matrix list rep if rep[1,1]+rep[2,1] != 1 & rep[1,1]*rep[2,1] != 0 { forvalues i=1/`=rowsof(rep)'{ qui replace `gp'=`i'-1 if `gp'==rep[`i',1] di "WARNING : `gp' `=rep[`i',1]' is now `gp' `=`i'-1' " } } forvalues g = 0/1 { qui tab `gp' if `gp' == `g' local nbp_gp`g' = r(N) } } /*item rename*/ /* Items au temps 1 : 1 à nbitems ``j'' Items au temps 2 : nbitems à 2*nbitems ``=`j'+`nbitems''' Si t varie, puis num item : ``=(`t'-1)*`nbitems'+`j''' */ local com_z = 0 // Indicatrice de recodage /*verif modalités répondues*/ if "`gp'" == "" { // Si pas d'option groupe forvalues j = 1 / `nbitems' { local recoda_`j' = 0 qui tab ``j'', matrow(rect1_`j') // Récupération des infos moda du temps 1 local minm`j'_t1 = rect1_`j'[1,1] local maxm`j'_t1 = rect1_`j'[r(r),1] qui tab ``=`j'+`nbitems''', matrow(rect2_`j') // Récupération des infos moda du temps 2 local minm`j'_t2 = rect2_`j'[1,1] local maxm`j'_t2 = rect2_`j'[r(r),1] local minm_`j' = min(`minm`j'_t1',`minm`j'_t2') // Info moda pour l'item j local maxm_`j' = max(`maxm`j'_t1',`maxm`j'_t2') local nbm_`j' = `=`maxm_`j''-`minm_`j''' if `minm_`j'' != 0 & `com_z' == 0 { local com_z = 1 } //Recodage des réponses en 0, 1, 2, etc... forvalues r = 0/`=`maxm_`j''-1' { qui replace ``j'' = `r' if ``j'' == `=`r'+`minm_`j''' qui replace ``=`j'+`nbitems''' = `r' if ``=`j'+`nbitems''' == `=`r'+`minm_`j''' } // Vérif. Que toutes les modas sont utilisées & concordance entre temps forvalues m = 0/`nbm_`j'' { qui count if ``j'' == `m' local nb_rn1 = r(N) qui count if ``=`j'+`nbitems''' == `m' local nb_rn2 = r(N) local nb_rn = min(`nb_rn1',`nb_rn2') if `nb_rn' == 0 { // Une moda n'est pas utilisée local recoda_`j' = 1 if `m' == 0 | `m' <= `minm`j'_t1' | `m' <= `minm`j'_t2' { // La moda 0 ou les moda min ne sont pas utilisées local stop = 1 forvalues k = 1/`=`nbm_`j''-`m'' { qui count if ``j'' == `=`m' + `k'' local v`k'1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' local v`k'2 = r(N) if (`v`k'1' != 0 | `v`k'2' != 0) & `stop' != 0 { qui replace ``j''= `=`m'+`k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m'+`k'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `=`m'+`k'' merged " local stop = 0 } } } else if `m' >= `maxm`j'_t1' | `m' >= `maxm`j'_t2' | `m' == `maxm_`j'' { // La (ou les) moda max ne sont pas utilisée(s) local stop = 1 forvalues k = 1/`m' { qui count if ``j'' == `=`m' - `k'' local v`k'1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' local v`k'2 = r(N) if (`v`k'1' != 0 | `v`k'2' != 0) & `stop' != 0 { qui replace ``j''=`=`m' - `k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m' - `k'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `=`m'-`k'' merged" local stop = 0 } } } else { if runiform()>0.5{ // Tirage au sort pour regrouper local stop = 1 forvalues k = 1/`m' { qui count if ``j'' == `=`m' - `k'' local v`k'1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' local v`k'2 = r(N) if (`v`k'1' != 0 | `v`k'2' != 0) & `stop' != 0 { qui replace ``j''= `=`m'-`k'' if ``j''==`m' qui replace ``=`j'+`nbitems''' =`=`m'-`k'' if ``=`j'+`nbitems''' ==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `=`m'-`k'' merged" local stop = 0 } } } else { local stop = 1 forvalues k = 1/`=`nbm_`j''-`m'' { qui count if ``j'' == `=`m' + `k'' local v`k'1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' local v`k'2 = r(N) if (`v`k'1' != 0 | `v`k'2' != 0) & `stop' != 0 { qui replace ``j''=`=`m' + `k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m' + `k'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `=`m'+`k'' merged" local stop = 0 } else { if `stop' != 0 { qui replace ``j''= `nbm_`j'' if ``j''==`m' qui replace ``=`j'+`nbitems'''= `nbm_`j'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `nbm_`j'' merged" local stop = 0 } } } } } } } } } else { // Cas où l'option groupe est utilisée forvalues j = 1 / `nbitems' { local recoda_`j' = 0 qui tab ``j'' if `gp' == 0, matrow(rect1_g0_`j') matcell(nbrt1_g0_`j') // Récupération des infos moda du temps 1pour chaque groupe local minm`j'_t1_g0 = rect1_g0_`j'[1,1] local maxm`j'_t1_g0 = rect1_g0_`j'[r(r),1] qui tab ``j'' if `gp' == 1, matrow(rect1_g1_`j') matcell(nbrt1_g1_`j') local minm`j'_t1_g1 = rect1_g1_`j'[1,1] local maxm`j'_t1_g1 = rect1_g1_`j'[r(r),1] qui tab ``=`j'+`nbitems''' if `gp' == 0, matrow(rect2_g0_`j') matcell(nbrt2_g0_`j') // Récupération des infos moda du temps 2 pour chaque groupe local minm`j'_t2_g0 = rect2_g0_`j'[1,1] local maxm`j'_t2_g0 = rect2_g0_`j'[r(r),1] qui tab ``=`j'+`nbitems''' if `gp' == 1 , matrow(rect2_g1_`j') matcell(nbrt2_g1_`j') local minm`j'_t2_g1 = rect2_g0_`j'[1,1] local maxm`j'_t2_g1 = rect2_g0_`j'[r(r),1] local minm_`j' = min(`minm`j'_t1_g0',`minm`j'_t2_g0',`minm`j'_t1_g1',`minm`j'_t2_g1') // Info moda pour l'item j local maxm_`j' = max(`maxm`j'_t1_g0',`maxm`j'_t2_g0',`maxm`j'_t1_g1',`maxm`j'_t2_g1') local nbm_`j' = `=`maxm_`j''-`minm_`j''+1' if `minm_`j'' != 0 & `com_z' == 0 { local com_z = 1 } //Recodage des réponses en 0, 1, 2, etc... forvalues r = 0/`=`maxm_`j''-1' { qui replace ``j'' = `r' if ``j'' == `=`r'+`minm_`j''' qui replace ``=`j'+`nbitems''' = `r' if ``=`j'+`nbitems''' == `=`r'+`minm_`j''' } // Vérif. Que toutes les modas sont utilisées & concordance entre temps forvalues m = 0/`=`nbm_`j''-1' { qui count if ``j'' == `m' & `gp' == 0 local nb_rn1_g0 = r(N) qui count if ``j'' == `m' & `gp' == 1 local nb_rn1_g1 = r(N) qui count if ``=`j'+`nbitems''' == `m' & `gp' == 0 local nb_rn2_g0 = r(N) qui count if ``=`j'+`nbitems''' == `m' & `gp' == 1 local nb_rn2_g1 = r(N) local nb_rn = min(`nb_rn1_g0',`nb_rn2_g0',`nb_rn1_g1',`nb_rn2_g1') if `nb_rn' == 0 { // Une moda n'est pas utilisée local recoda_`j' = 1 if `m' == 0 | `m' < `minm`j'_t1_g0' | `m' < `minm`j'_t2_g0' | `m' < `minm`j'_t1_g1' | `m' < `minm`j'_t2_g1' { // La moda 0 n'est pas utilisée local stop = 1 forvalues k = 1/`=`nbm_`j''-`m'' { qui count if ``j'' == `=`m' + `k'' & `gp' == 0 local v`k'1_0 = r(N) qui count if ``j'' == `=`m' + `k'' & `gp' == 1 local v`k'1_1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' & `gp' == 0 local v`k'2_0 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' & `gp' == 1 local v`k'2_1 = r(N) if (`v`k'1_0' != 0 | `v`k'2_0' != 0 | `v`k'1_1' != 0 | `v`k'2_1' != 0) & `stop' != 0 { qui replace ``j''= `=`m'+`k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m'+`k'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `=`m'+`k'' merged" local stop = 0 } } } else if `m' == `=`nbm_`j''-1' | `m' >= `maxm`j'_t2_g0' | `m' >= `maxm`j'_t1_g1' | `m' >= `maxm`j'_t2_g1' { // La moda max n'est pas utilisée local stop = 1 forvalues k = 1/`=`m'' { qui count if ``j'' == `=`m' - `k'' & `gp' == 0 local v`k'1_0 = r(N) qui count if ``j'' == `=`m' - `k'' & `gp' == 1 local v`k'1_1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' & `gp' == 0 local v`k'2_0 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' & `gp' == 1 local v`k'2_1 = r(N) if (`v`k'1_0' != 0 | `v`k'2_0' != 0 | `v`k'1_1' != 0 | `v`k'2_1' != 0 ) & `stop' != 0 { qui replace ``j''= `=`m' - `k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''= `=`m' - `k'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `=`m'-`k'' merged" local stop = 0 } } } else { // Moda central non utilisée if runiform()>0.5{ // Tirage au sort pour regrouper local stop = 1 forvalues k = 1/`m' { qui count if ``j'' == `=`m' - `k'' & `gp' == 0 local v`k'1_0 = r(N) qui count if ``j'' == `=`m' - `k'' & `gp' == 1 local v`k'1_1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' & `gp' == 0 local v`k'2_0 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' & `gp' == 1 local v`k'2_1 = r(N) if (`v`k'1_0' != 0 | `v`k'2_0' != 0 | `v`k'1_1' != 0 | `v`k'2_1' != 0) & `stop' != 0 { qui replace ``j''= `=`m'-`k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m'-`k'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `=`m'-`k'' merged" local stop = 0 } } } else { local stop = 1 forvalues k = 1/`=`nbm_`j''-`m'' { qui count if ``j'' == `=`m' + `k'' & `gp' == 0 local v`k'1_0 = r(N) qui count if ``j'' == `=`m' + `k'' & `gp' == 1 local v`k'1_1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' & `gp' == 0 local v`k'2_0 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' & `gp' == 1 local v`k'2_1 = r(N) if (`v`k'1_0' != 0 | `v`k'2_0' != 0 | `v`k'1_1' != 0 | `v`k'2_1' != 0) & `stop' != 0{ qui replace ``j''=`=`m' + `k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m' + `k'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `=`m'+`k'' merged" local stop = 0 } else { if `stop' != 0 { qui replace ``j''= `nbm_`j'' if ``j''==`m' qui replace ``=`j'+`nbitems'''= `nbm_`j'' if ``=`j'+`nbitems'''==`m' di "WARNING: items ``j'' & ``=`j'+`nbitems''': answers `m' and `nbm_`j'' merged" local stop = 0 } } } } } } } } } if `com_z' == 1 { di di "WARNING : Automatic recoding, the first response category is 0. see {help rosali:help rosali}." di } forvalues j =1/`nbitems' { qui tab ``j'', matrow(rec) // Récupération des infos moda du temps 1 local nbm`j'_t1 = r(r) qui tab ``=`j'+`nbitems''' // Récupération des infos moda du temps 2 local nbm`j'_t2 = r(r) local nbm_`j' = max(`nbm`j'_t1', `nbm`j'_t2') //Recodage des réponses en 0, 1, 2, etc... forvalues r = 0/`=`nbm_`j''-1' { qui replace ``j'' = `r' if ``j'' == `=rec[`=`r'+1',1]' qui replace ``=`j'+`nbitems''' = `r' if ``=`j'+`nbitems''' == `=rec[`=`r'+1',1]' } } /* Calcul de nbmoda & nbdif */ forvalues j = 1/`nbitems' { qui tab ``j'' local nbmoda_`j' = r(r) local nbdif_`j' = r(r) - 1 } local maxdif = 0 local nbmoda_sum = 0 forvalues j = 1/`nbitems' { if `maxdif' < `nbdif_`j'' { local maxdif = `nbdif_`j'' } local nbmoda_sum = `nbmoda_sum' + `nbdif_`j'' } /* Au moins 2 moda par item */ forvalues j=1/`nbitems' { if `nbmoda_`j'' == 1 { di as error "``j'' have only one response category, the analysis can be performed only if each item has at least 2 response categories" error 198 exit } } local coln "" forvalues j =1 /`nbitems' { local coln "`coln' ``j''" } matrix nbmod = J(2,`nbitems',.) matrix colnames nbmod = `coln' matrix rownames nbmod = NbModa Recoding forvalues j = 1/`nbitems' { matrix nbmod[1,`j'] = `nbmoda_`j'' matrix nbmod[2,`j'] = `recoda_`j'' } *Erreur si plus de 200 difficultés local nb_test = 0 forvalues j=1/`nbitems' { local nb_test = `nb_test'+`nbmoda_`j'' -1 } if `nb_test' >= 200 { di as error "The total number of items difficulties to be estimated must be less than 200 ({hi:moda} option option)." error 198 exit } local nbitp = 0 forvalues j = 1/`nbitems' { if `nbmoda_`j'' >= 2 { local nbitp = `nbitp' + 1 } } qui count local nbpat = r(N) /********************************* * AFFICHAGE INITIAL *********************************/ di di _col(5) "{hline 78}" di _col(15) "Time 1" _col(42) "Time 2" _col(65) "Nb of Answer Cat." di _col(5) "{hline 78}" forvalues j=1/`nbitems' { di as text _col(15) abbrev("``j''",20) _col(42) abbrev("``=`j'+`nbitems'''",20) _col(65) `nbmoda_`j'' } di _col(5) "{hline 78}" if "`group'" != "" { di _col(10) "Nb of patients: " abbrev("`gp'",20) " 0 = `nbp_gp0' ;", abbrev("`gp'",20) " 1 = `nbp_gp1'" di _col(5) "{hline 78}" } else { di _col(10) "Nb. of patients: `nbpat'" di _col(5) "{hline 78}" } di if `nbitems' == 1 { di as error "The analysis can only be performed with at least 2 items." error 198 exit } forvalues j = 1/`nbitems' { if `nbmoda_`j'' == 2 { di "WARNING: ``j'' has only 2 response categories, no distinction can be made between uniform or non-uniform recalibration." } if `nbmoda_`j'' == 1 { di as error "Only `nbmoda_`j'' response categories of item ``j'' were used by the sample, the analysis cannot be performed." error 198 exit } if `nbmoda_`j'' == 0 { di as error "No response categories of item ``j'' were used by the sample, the analysis cannot be performed." error 198 exit } } di if "`group'" != "" { di _col(2) as text "For all models : - mean of the latent trait in `gp' 0 at time 1 is constrained at 0" di _col(19) "- equality of variances between groups" di } else { di _col(2) as text "For all models : mean of the latent trait at time 1 is constrained at 0" di } /********************************* * DEFINITION DES CONTRAINTES *********************************/ if "`group'"!="" { // Contraintes si option groupe *EGALITE ENTRE GROUPES A T1 (1-200) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=0+`maxdif'*(`j'-1)+`p'' [`p'.``j'']0bn.`gp'=[`p'.``j'']1.`gp' } } *DIF UNIFORME A T1 (201-400) forvalues j=1/`nbitems'{ forvalues p=2/`nbdif_`j''{ constraint `=200+`maxdif'*(`j'-1)+`p'' [`p'.``j'']1.`gp'-[`p'.``j'']0bn.`gp'=`p'*[1.``j'']1.`gp'-`p'*[1.``j'']0bn.`gp' } } *EGALITES ENTRE T1 et T2, groupe 0 (401-600) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=400+`maxdif'*(`j'-1)+`p'' [`p'.``j'']0bn.`gp'=[`p'.``=`j'+`nbitems''']0bn.`gp' } } *EGALITES ENTRE T1 et T2, groupe 1 (601-800) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=600+`maxdif'*(`j'-1)+`p'' [`p'.``j'']1.`gp'=[`p'.``=`j'+`nbitems''']1.`gp' } } * RC COMMUNE (801-1000) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=800+`maxdif'*(`j'-1)+`p'' [`p'.``=`j'+`nbitems''']0bn.`gp'-[`p'.``j'']0bn.`gp'=[`p'.``=`j'+`nbitems''']1.`gp'-[`p'.``j'']1.`gp' } } * RC UNIFORME, groupe 0 (1001-1200) forvalues j=1/`nbitems'{ forvalues p=2/`nbdif_`j''{ constraint `=1000+`maxdif'*(`j'-1)+`p'' `p'*([1.``=`j'+`nbitems''']0bn.`gp'-[1.``j'']0bn.`gp')=[`p'.``=`j'+`nbitems''']0bn.`gp'-[`p'.``j'']0bn.`gp' } } * RC UNIFORME, groupe 1 (1201-1400) forvalues j=1/`nbitems'{ forvalues p=2/`nbdif_`j''{ constraint `=1200+`maxdif'*(`j'-1)+`p'' `p'*([1.``=`j'+`nbitems''']1.`gp'-[1.``j'']1.`gp')=[`p'.``=`j'+`nbitems''']1.`gp'-[`p'.``j'']1.`gp' } } *Sans interaction temps x groupe constraint 1999 [/]:mean(THETA2)#1.`gp'-[/]:mean(THETA2)#0bn.`gp'=[/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp' } else { //Contraintes si pas d'option groupe *EGALITE ENTRE T1 et T2 (401-600) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=400+`maxdif'*(`j'-1)+`p'' [`p'.``j'']:_cons = [`p'.``=`j'+`nbitems''']:_cons } } *RC UNIFORME (1001-1200) forvalues j=1/`nbitems'{ forvalues p=2/`nbdif_`j''{ constraint `=1000+`maxdif'*(`j'-1)+`p'' `p'*([1.``=`j'+`nbitems''']:_cons - [1.``j'']:_cons)=[`p'.``=`j'+`nbitems''']:_cons -[`p'.``j'']:_cons } } } /********************************* * MATRICE DES RESULTATS *********************************/ matrix dif_rc=J(`nbitems',8,.) matrix colnames dif_rc=DIFT1 DIFU RC RC_DIF RCG0 RCUG0 RCG1 RCUG1 local rown "" forvalues j =1 /`nbitems' { local rown "`rown' ``j''" } matrix rownames dif_rc = `rown' *Nb modalité max local nbdif_max = 0 forvalues j=1/`nbitems' { if `nbdif_max' < `nbdif_`j'' { local nbdif_max = `nbdif_`j'' } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////// PARTIE 1 : DIF A T1 ? //////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// if "`group'"!="" & "`nodif'"=="" { // PARTIE 1 = Slmt si option group & pas de "nodif" di _dup(49) "_ " di di as input "PART 1: DETECTION OF DIFFERENCE IN ITEM DIFFICULTIES BETWEEN GROUPS AT TIME 1" ********************************* ** MODEL B ** ********************************* local model "" forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ local model "`model' (`p'.``j''<-THETA@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading cons) var(0: THETA@v) var(1:THETA@v) latent(THETA) nocapslatent /* Stockage des estimations du modèle */ estimates store modeldifB matrix val_mB = r(table) matrix esti_B = e(b) /* Calcul des difficultés d'item (delta_j) */ matrix delta_mB=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC "`name_partOneC' delta_`p'_gp`g'" } } local name_partOneL "" forvalues j=1/`nbitems' { local name_partOneL "`name_partOneL' ``j''" } matrix colnames delta_mB = `name_partOneC' matrix rownames delta_mB = `name_partOneL' matrix delta_mB_se=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC_se "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC_se "`name_partOneC_se' delta_`p'_gp`g'_se" } } matrix colnames delta_mB_se = `name_partOneC_se' matrix rownames delta_mB_se = `name_partOneL' forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues g=0/1{ qui lincom -[`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mB=r(estimate) local delta`j'_`p'g`g'mB_se=r(se) if `p'>1{ qui lincom [`=`p'-1'.``j'']:`g'.`gp' - [`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mB = r(estimate) local delta`j'_`p'g`g'mB_se = r(se) } matrix delta_mB[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mB' matrix delta_mB_se[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mB_se' } } } matrix var_mB = (val_mB[1,"/var(THETA)#0bn.`gp'"]\val_mB[2,"/var(THETA)#0bn.`gp'"]) /*group effect*/ qui lincom [/]:mean(THETA)#1.`gp'-[/]:mean(THETA)#0bn.`gp' local geffmB=r(estimate) local segeffmB=r(se) qui test [/]:mean(THETA)#1.`gp'-[/]:mean(THETA)#0bn.`gp'=0 local gcmBp=r(p) local gcmBchi=r(chi2) local gcmBdf=r(df) ********************************* ** MODEL A ** ********************************* local model "" forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ local model "`model' (`p'.``j''<-THETA@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading means) var(0: THETA@v) var(1:THETA@v) from(esti_B, skip) latent(THETA) nocapslatent /* Stockage des estimations du modèle */ estimates store modeldifA matrix val_mA = r(table) matrix esti_A = e(b) /* Calcul des difficultés d'item (delta_j) */ matrix delta_mA=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC "`name_partOneC' delta_`p'_gp`g'" } } local name_partOneL "" forvalues j=1/`nbitems' { local name_partOneL "`name_partOneL' ``j''" } matrix colnames delta_mA = `name_partOneC' matrix rownames delta_mA = `name_partOneL' matrix delta_mA_se=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC_se "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC_se "`name_partOneC_se' delta_`p'_gp`g'_se" } } matrix colnames delta_mA_se = `name_partOneC_se' matrix rownames delta_mA_se = `name_partOneL' forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues g=0/1{ qui lincom -[`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mA=r(estimate) local delta`j'_`p'g`g'mA_se=r(se) if `p'>1{ qui lincom [`=`p'-1'.``j'']:`g'.`gp' - [`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mA = r(estimate) local delta`j'_`p'g`g'mA_se = r(se) } matrix delta_mA[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mA' matrix delta_mA_se[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mA_se' } } } //Variance et se mA matrix var_mA = (val_mA[1,"/var(THETA)#0bn.`gp'"]\val_mA[2,"/var(THETA)#0bn.`gp'"]) ********************************* *************MODEL C************* ********************************* // Etape itérative si lrtest significatif local nb_stepC = 0 local diftestp = 1 if `diftestp'<2{ /*If pvalue(LRtest)<0.05 then step C*/ di di as input "PROCESSING STEP C" di /*test DIF pour chaque item*/ local boucle = 1 local stop = 0 while `boucle'<=`=`nbitp'-1' & `stop'==0{ /*on s'arrête quand on a libéré du DIF sur (tous les items-1) ou lorsqu'il n'y a plus de tests significatifs*/ local nb_stepC = `boucle' local pajust=0.05 /*réinitialisation de la matrice de test*/ matrix test_difu_`boucle'=J(`nbitems',3,.) matrix colnames test_difu_`boucle'=chi_DIFU df_DIFU pvalueDIFU matrix test_dif_`boucle'=J(`nbitems',3,.) matrix colnames test_dif_`boucle'=chi_DIF df_DIF pvalueDIF local nbsig=0 local minpval=1 local itemdif=0 if "`detail'" != ""{ di as text "Loop `boucle'" di as text _col(5) "Adjusted alpha: " %6.4f `pajust' di di as text _col(10) "{hline 65}" di as text _col(10) "Freed item" _col(31) "Chi-Square" _col(48) "DF" _col(57) "P-Value" di as text _col(10) "{hline 65}" } /*boucle de test*/ forvalues j=1/`nbitems'{ //if `nbdif_`j'' > 2 { local model "" local listconst "" if dif_rc[`j',1]==. | dif_rc[`j',1]==0 { /*si pas de DIF déjà détecté sur l'item j*/ /*on libère le DIF de l'item i: pas de contraintes*/ forvalues k=1/`nbitems'{ /*contraintes pour les autres items (si DIF NU sur item k, pas de contraintes*/ if `k'!=`j' & `nbmoda_`j'' >= 2 { if dif_rc[`k',1]==. | dif_rc[`k',1]==0 {/*pas de DIF sur item k: contraintes 1-200*/ forvalues p=1/`nbdif_`k''{ qui local listconst "`listconst' `=0+`maxdif'*(`k'-1)+`p''" qui constraint list `=0+`maxdif'*(`k'-1)+`p'' } } else{ if dif_rc[`k',2]!=. & dif_rc[`k',2]!= 0 & `nbmoda_`k'' > 2 { /*DIF U: contraintes 201-400*/ forvalues p=2/`nbdif_`k''{ qui local listconst "`listconst' `=200+`maxdif'*(`k'-1)+`p''" qui constraint list `=200+`maxdif'*(`k'-1)+`p'' } } } } } forvalues jj=1/`nbitems'{ forvalues p=1/`nbdif_`jj''{ local model "`model' (`p'.``jj''<-THETA@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) var(0: THETA@v) var(1:THETA@v) constraint(`listconst') from(esti_B) latent(THETA) nocapslatent estimates store modeldif3b`boucle'it`i' ************************* *****test DIF item i***** ************************* qui test [1.``j'']1.`gp'=[1.``j'']0bn.`gp' if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui test [`p'.``j'']1.`gp'=[`p'.``j'']0bn.`gp', acc } } matrix test_dif_`boucle'[`j',1]=(r(chi2),r(df),r(p)) /* Test DIF Uniforme */ if `nbmoda_`j'' > 2 { qui test 2*([1.``j'']1.`gp'-[1.``j'']0bn.`gp')=[2.``j'']1.`gp'-[2.``j'']0bn.`gp' forvalues p=3/`nbdif_`j''{ qui test `p'*([1.``j'']1.`gp'-[1.``j'']0bn.`gp')=[`p'.``j'']1.`gp'-[`p'.``j'']0bn.`gp', acc } matrix test_difu_`boucle'[`j',1]=(r(chi2), r(df), r(p)) } if test_dif_`boucle'[`j',3]<`pajust'{/*si DIF sur item i*/ local ++nbsig if test_dif_`boucle'[`j',3]<`minpval'{ local minpval=test_dif_`boucle'[`j',3] local itemdif=`j' } } if "`detail'" != "" { di as text _col(10) abbrev("``j''",15) as result _col(31) %6.3f test_dif_`boucle'[`j',1] _col(48) test_dif_`boucle'[`j',2] _col(57) %6.4f test_dif_`boucle'[`j',3] } } } /*si nb de tests significatifs=0, on arrête*/ if `nbsig'==0{ local stop=1 if `boucle' == 1 { if "`detail'" != "" { di as text _col(10) "{hline 65}" di di as result "No significant test: no difference between groups detected, no DIF detected" di } } else { if "`detail'" != ""{ di as text _col(10) "{hline 65}" di di as result "No other significant tests" di } } } else{/*si nb de tests significatifs>0, mise à jour de la matrice de résultats*/ matrix dif_rc[`itemdif',1]=`boucle' if "`detail'" != ""{ di as text _col(10) "{hline 65}" di di as result "Difference between groups on ``itemdif'' at time 1" } if `nbmoda_`itemdif'' > 2 { if "`detail'" != "" { di di %~60s as text "Test of uniform difference" di _col(10) "{hline 40}" di _col(10) as text "Chi-square" _col(28) "DF" _col(40) "P-value" di _col(10) as result %4.2f `=test_difu_`boucle'[`itemdif',1]' _col(28) `=test_difu_`boucle'[`itemdif',2]' _col(40) %4.2f `=test_difu_`boucle'[`itemdif',3]' di _col(10) as text "{hline 40}" } if test_difu_`boucle'[`itemdif',3]<0.05{ /*DIF NU détectée*/ matrix dif_rc[`itemdif',2]=0 di di as result "``itemdif'' : Non-uniform differences of item difficulties between groups at T1" di } else{/*DIF U détectée*/ matrix dif_rc[`itemdif',2]=`boucle' di di as result "``itemdif'' : Uniform differences of item difficulties between groups at T1" di } } else { // Différence entre groupes au temps 1 mais slmt 2 moda. donc pas de U ou NU di _col(15) _dup(60) "-" } } local ++boucle } } /* MODELE FINAL DE LA PARTIE 1. Si DIFT1 détecté (=Au moins 2 boucles dans l'étape C)*/ if `nb_stepC' > 1 { forvalues j=1/`nbitems'{ local model "" local listconst "" if dif_rc[`j',1]==. | dif_rc[`j',1]==0 { /*si pas de DIF: contraintes 1-200*/ forvalues p=1/`nbdif_`j''{ qui local listconst "`listconst' `=0+`maxdif'*(`j'-1)+`p''" qui constraint list `=0+`maxdif'*(`j'-1)+`p'' } } else { if dif_rc[`j',2]!=. & dif_rc[`j',2]!=0 { /*DIF U: contraintes 201-400*/ forvalues p=2/`nbdif_`j''{ qui local listconst "`listconst' `=200+`maxdif'*(`j'-1)+`p''" qui constraint list `=200+`maxdif'*(`j'-1)+`p'' } } } } forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ local model "`model' (`p'.``j''<-THETA@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) var(0: THETA@v) var(1:THETA@v) constraint(`listconst') from(esti_B) latent(THETA) nocapslatent /* Stockage des estimations du modèle */ estimates store modeldifCFin matrix val_mC = r(table) /* Calcul des difficultés d'item (delta_j) */ matrix delta_mCFin=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC "`name_partOneC' delta_`p'_gp`g'" } } local name_partOneL "" forvalues j=1/`nbitems' { local name_partOneL "`name_partOneL' ``j''" } matrix colnames delta_mCFin = `name_partOneC' matrix rownames delta_mCFin = `name_partOneL' matrix delta_mCFin_se=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC_se "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC_se "`name_partOneC_se' delta_`p'_gp`g'_se" } } matrix colnames delta_mCFin_se = `name_partOneC_se' matrix rownames delta_mCFin_se = `name_partOneL' forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues g=0/1{ qui lincom -[`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mCFin=r(estimate) local delta`j'_`p'g`g'mCFin_se=r(se) if `p'>1{ qui lincom [`=`p'-1'.``j'']:`g'.`gp' - [`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mCFin = r(estimate) local delta`j'_`p'g`g'mCFin_se = r(se) } matrix delta_mCFin[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mCFin' matrix delta_mCFin_se[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mCFin_se' } } } if "`group'" != "" { //Variance et se mA matrix var_mC = (val_mC[1,"/var(THETA)#0bn.`gp'"]\val_mC[2,"/var(THETA)#0bn.`gp'"]) } /*group effect*/ qui lincom [/]:mean(THETA)#1.`gp'-[/]:mean(THETA)#0bn.`gp' local geffmCFin=r(estimate) local segeffmCFin=r(se) qui test [/]:mean(THETA)#1.`gp'-[/]:mean(THETA)#0bn.`gp'=0 local gcmCFinp=r(p) local gcmCFinchi=r(chi2) local gcmCFindf=r(df) } } ********************************* *** BILAN *** ********************************* if "`group'" != "" & "`nodif'" == "" { di di %~84s as result "SUMMARY" di as result _col(2) "{hline 80}" di as result _col(18) "Difference in" di as result _col(2) "Item" _col(18) "groups at T1" _col(36) "Recalibration" _col(54) "RC " abbrev("`gp'",10) " 0" _col(72) "RC " abbrev("`gp'",10) " 1" di as result _col(2) "{hline 80}" forvalues j=1/`nbitems' { local RC local RCg0 local RCg1 local difft1 if (dif_rc[`j',3] != . & dif_rc[`j',3] != 0 & dif_rc[`j',4] == 0) { local RC "Common" } if (dif_rc[`j',3] != . & dif_rc[`j',3] != 0 & dif_rc[`j',4] != 0) { local RC "Differential" } if `nbmoda_`j'' > 2 { if (dif_rc[`j',6]!=. & dif_rc[`j',6] != 0) { local RCg0 "Uniform" } if (dif_rc[`j',6] == 0) { local RCg0 "Non-uniform" } if (dif_rc[`j',8]!=. & dif_rc[`j',8] != 0) { local RCg1 "Uniform" } if ( dif_rc[`j',8] == 0) { local RCg1 "Non-uniform" } if (dif_rc[`j',1] != . ) { if (dif_rc[`j',2]!=0) { local difft1 "Uniform" } else { local difft1 "Non-uniform" } } } else { if dif_rc[`j',6] != . { local RCg0 " X " } if dif_rc[`j',8] != . { local RCg1 " X " } if dif_rc[`j',1] != . { local difft1 " X " } } di as result _col(2) abbrev("``j''",15) as text _col(18) "`difft1'" _col(36) "`RC'" _col(54) "`RCg0'" _col(72) "`RCg1'" } di as result _col(2) "{hline 80}" di } else if "`group'" != "" & "`nodif'" != "" { di di %~90s as result "SUMMARY" di as result _col(10) "{hline 70}" di as result _col(10) "Item" _col(26) "Recalibration" _col(46) "RC `gp' 0" _col(62) "RC `gp' 1" di _col(10) "{hline 70}" forvalues j=1/`nbitems' { local RC local RCg0 local RCg1 if (dif_rc[`j',3] != . & dif_rc[`j',3] != 0 & dif_rc[`j',4] == 0) { local RC "Common" } if (dif_rc[`j',3] != . & dif_rc[`j',3] != 0 & dif_rc[`j',4] != 0) { local RC "Differential" } if `nbmoda_`j'' > 2 { if (dif_rc[`j',6]!=. & dif_rc[`j',6] != 0) { local RCg0 "Uniform" } if (dif_rc[`j',6] == 0) { local RCg0 "Non-uniform" } if (dif_rc[`j',8]!=. & dif_rc[`j',8] != 0) { local RCg1 "Uniform" } if ( dif_rc[`j',8] == 0) { local RCg1 "Non-uniform" } } else { if dif_rc[`j',6] != . { local RCg0 " X " } if dif_rc[`j',8] != . { local RCg1 " X " } } di as result _col(10) "``j''" as text _col(26) "`RC'" _col(44) "`RCg0'" _col(62) "`RCg1'" } di as result _col(10) "{hline 70}" } else if "`group'" == "" { di di %~60s as result "SUMMARY" di as result _col(10) "{hline 40}" di _col(10) "Item" _col(36) "Recalibration" di _col(10) "{hline 40}" forvalues j=1/`nbitems' { local RC if dif_rc[`j',3] != . { if `nbmoda_`j'' > 2 { if (dif_rc[`j',6]!=. & dif_rc[`j',6] != 0) { local RC "Uniform" } if (dif_rc[`j',6] == 0) { local RC "Non-uniform" } } else { local RC " X " } } di as result _col(10) "``j''" as text _col(38) "`RC'" } di as result _col(10) "{hline 40}" di } matrix dif_detect = J(1,`nbitems',.) local numdif=1 forvalues j=1/`nbitems' { if dif_rc[`j',1] != . { matrix dif_detect[1,`numdif']=`j' local numdif = `numdif'+1 } } return matrix difitems = dif_detect capture qui use `saverspcm', clear end