*! version 1 january 25th, 2010 *! Jean-Benoit Hardouin ************************************************************************************************************ * raschpower: Estimation of the power of the Wald test in order to compare the means of the latent trait in two groups of individuals * * Version 1 : January 25, 2010 (Jean-Benoit Hardouin) * * Jean-benoit Hardouin, Faculty of Pharmaceutical Sciences - University of Nantes - France * jean-benoit.hardouin@univ-nantes.fr * * News about this program : http://www.anaqol.org * FreeIRT Project : http://www.freeirt.org * * Copyright 2010 Jean-Benoit Hardouin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ************************************************************************************************************/ program define raschpower1,rclass syntax [varlist] [, n0(int 100) n1(int 100) gamma(real .5) d(string) var(real 1) nodes(int 12)] if "`d'"=="" { tempname d matrix `d'=[-1\-.5\0\.5\1] } /*tempname abs weight ghquadm `nodes' `abs' `weight' matrix `abs'=`abs'' matrix `weight'=`weight'' matrix `abs'=`abs'*sqrt(`var') *matrix list `abs' matrix `abs'=[5.50090170446774,4.27182584793228,3.22370982877010,2.25946445100080,1.34037519715162,0.444403001944139,-5.50090170446774,-4.27182584793228,-3.22370982877010,-2.25946445100080,-1.34037519715162,-0.444403001944139] matrix `abs'=`abs''*sqrt(`var') matrix `weight'=[0.000000375975985,0.000121250244966,0.005523056331147,0.072984713184739,0.368391758069477,0.806292983509187,0.000000375975985,0.000121250244966,0.005523056331147,0.072984713184739,0.368391758069477,0.806292983509187] matrix `weight'=`weight'' *matrix list `abs' */ local nbitems=rowsof(`d') di in gr "Number of individuals in the first group: " in ye `n0' di in gr "Number of individuals in the second group: " in ye `n1' di in green "Group effect: " in ye `gamma' di in gr "Variance of the latent trait: " in ye `var' di in gr "Number of items: " in ye `nbitems' di in green "Difficulties parameters of the items: " _c tempname dd matrix `dd'=`d'' matrix list `dd',noblank nohalf nonames noheader clear local temp=2^(`nbitems') qui range x 0 `=`temp'-1' `temp' qui g t=x loc i=1 qui count if t>0 loc z=r(N) qui while `z'>0 { qui g item`i'=mod(t,2^`i')==2^`=`i'-1' qui replace t=t-item`i'*2^`=`i'-1' qui count if t>0 loc z=r(N) loc i=`i'+1 } drop t qui expand 2 qui gen group=0 in 1/`temp' qui replace group=1 in `=`temp'+1'/`=2*`temp'' qui gen mean=(-1)^(1-group)*`gamma'*sqrt(`var')/2 qui gen proba=1 forvalues i=1/`nbitems' { qui gen eps`i'=exp(mean-`d'[`i',1]) qui replace proba=proba*eps`i'^item`i'/(1+eps`i') } qui gen eff=. forvalues i=0/1 { qui replace eff=proba*`n`i'' if group==`i' } forvalues i=1/`nbitems' { qui gen f`i'=eps`i'^item`i'/(1+eps`i') qui gen fp`i'=(item`i'*eps`i'^item`i'+(item`i'-1)*eps`i'^(item`i'+1))/(1+eps`i')^2 qui gen fpp`i'=((item`i'^2*eps`i'^item`i'+(item`i'^2-1)*eps`i'^(item`i'+1))*(1+eps`i')^2-2*eps`i'*(1+eps`i')*(item`i'*eps`i'^item`i'+(item`i'-1)*eps`i'^(item`i'+1)))/(1+eps`i')^4 } qui replace eff=proba keep item* eff group proba local p1=1/`n1' local p0=1/`n0' qui gen eff2=. qui replace eff2=floor(eff/`p1') if group==1 qui replace eff2=floor(eff/`p0') if group==0 qui replace eff=eff-eff2*(`p1'*group+`p0'*(1-group)) qui su eff2 if group==1 local aff1=r(sum) qui su eff2 if group==0 local aff0=r(sum) *di "Nombre de patients affectes : `aff1' dans groupe 1 (sur `n1') et `aff0' dans le groupe 0 (sur `n0')" local unaff1=`n1'-`aff1' local unaff0=`n0'-`aff0' *di "Nombre de patients non affectes : `unaff1' dans groupe 1 (sur `n1') et `unaff0' dans le groupe 0 (sur `n0')" qui gsort + group - eff qui replace eff2=eff2+1 in 1/`unaff0' qui gsort - group - eff qui replace eff2=eff2+1 in 1/`unaff1' *list eff eff2 group proba qui drop if eff2==0 qui expand eff2 qui gen i=_n tempname diff matrix `diff'=`d'' /***************************A REVOIR forvalues i=1/`nbitems' { qui su item`i' local var=r(Var) if `var'==0 { qui drop item`i' } } ****************************FIN A REVOIR*/ *irtpoly item*, fixedvar(1) rasch fixed(`diff') covariablemean(group) sasout qui drop proba eff eff2 qui reshape long item, i(i) qui rename item rep qui rename _j item qui gen offset=0 forvalues i=1/`nbitems' { qui replace offset=-`diff'[1,`i'] if item==`i' } constraint 1 _cons=0 qui gen groupc=group-.5 xtlogit rep groupc ,nocons i(i) offset(offset) constraint(1) tempname b V matrix `b'=e(b) matrix `V'=e(V) local gammaest=`b'[1,1] local se=`V'[1,1]^.5 di di di in gr "{hline 76}" di _col(50) "Estimation with the " di _col(40) "Cramer-Rao bound" _col(60) "classical formula" di in gr "{hline 76}" di in green "Estimated value of the group effect" _col(49) in ye %7.2f `gammaest' di in green "Standard Error of this estimation" _col(49) in ye %7.2f `se' di in green "Variance if this estimation" _col(46) in ye %10.4f `=`se'^2' local power=1-normal(1.96-`gamma'/`se') local clpower=normal(sqrt(`n0'*`gamma'^2/2)-1.96) di in green "Estimated value of the power" _col(50) in ye %6.4f `power' _col(71) in ye %6.4f `clpower' local clnsn=2/`gamma'^2*(1.96-invnorm(1-`power'))^2 di in green "Number of patients for a power of" %6.2f `=`power'*100' "%" _col(49) in ye `n0' "/" `n1' _col(62) in ye %7.2f `clnsn' "/" %7.2f `clnsn' di in green "Ratio of the number of patients" in ye %6.2f _col(55)`=(`n0'+`n1')/(2*`clnsn')' di in gr "{hline 76}" return scalar EstGamma=`gammaest' return scalar CRbound=`=`se'^2' return scalar CRPower=`power' return scalar ClPower=`clpower' return scalar ClSS=`clnsn' return scalar Ratio=`=`n0'/`clnsn'' end