library(TAM) resali <- function(df=NULL,items=NULL,group=NULL,verbose=T) { if (verbose) { cat('-----------------------------------------------------------\n') cat('COMPUTING INITIAL PCM\n') cat('-----------------------------------------------------------\n') } nbitems <- length(items) nbitems_o <- nbitems items_n <- paste0('item',items) resp <- df[,items_n] grp <- df[,group] pcm_initial <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F) dat <- df dat$score <- rowSums(dat[,items_n]) nqt <- ifelse(length(unique(quantile(dat$score,seq(0,1,0.2))))==6,5,length(unique(quantile(dat$score,seq(0,1,0.2))))-1) while (length(unique(quantile(dat$score,seq(0,1,1/nqt))))!=nqt+1) { nqt <- nqt-1 } dat$score_q5 <- cut(dat$score,unique(quantile(dat$score,seq(0,1,1/nqt))),labels=1:nqt,include.lowest=T) res.anova <- rep(NA,nbitems) pval <- rep(NA,nbitems) fval <- rep(NA,nbitems) for (i in items) { dat[,paste0('res_',i)] <- IRT.residuals(pcm_initial)$stand_residuals[,i] res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat)) pval[i] <- res.anova[[i]][1,"Pr(>F)"] fval[i] <- res.anova[[i]][1,'F value'] } if (verbose) { cat('DONE\n') cat('-----------------------------------------------------------\n') } res.items <- c() res.uniform <- c() k <- 1 while(any(pval<0.05/(nbitems_o*3))) { k <- k+1 if (verbose) { cat(paste('COMPUTING STEP',k,'\n')) cat('-----------------------------------------------------------\n') } res.item <- gsub("[a-z]", "",colnames(resp)[which.max(fval)]) res.items <- c(res.items,res.item) res.uni <- res.anova[[which.max(fval)]][3,"Pr(>F)"]>0.05 res.uniform <- c(res.uniform,res.uni) items_n <- c(items_n[items_n!=paste0('item',res.item)],paste0("item",res.item,c("noTT","TT"))) dat[,paste0("item",res.item,'TT')] <- dat[dat$TT==1,paste0('item',res.item)] dat[,paste0("item",res.item,'noTT')] <- dat[dat$TT==0,paste0('item',res.item)] resp <- dat[,items_n] grp <- dat[,group] pcm_while <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F) nbitems <- length(items_n) res.anova <- rep(NA,nbitems) pval <- rep(NA,nbitems) fval <- rep(NA,nbitems) for (i in 1:nbitems) { dat[,paste0('res_',i)] <- IRT.residuals(pcm_while)$stand_residuals[,i] res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat)) pval[i] <- res.anova[[i]][1,"Pr(>F)"] fval[i] <- res.anova[[i]][1,'F value'] } zz <- 0 for (name_i in items_n) { zz <- zz+1 if (grepl("TT",name_i)) { pval[zz] <- 1 fval[zz] <- 0 } } if (verbose) { cat('DONE\n') cat('-----------------------------------------------------------\n') } } if (verbose) { cat("DETECTED DIF ITEMS\n") cat('-----------------------------------------------------------\n') } if (length(res.items>0)) { results <- data.frame(dif.items=res.items, uniform=1*res.uniform) return(results) } else { if (verbose) { cat("No DIF was detected\n") } return(NULL) } } resali_BF2 <- function(df=NULL,items=NULL,group=NULL,verbose=T) { if (verbose) { cat('-----------------------------------------------------------\n') cat('COMPUTING INITIAL PCM\n') cat('-----------------------------------------------------------\n') } nbitems <- length(items) nbitems_o <- nbitems items_n <- paste0('item',items) resp <- df[,items_n] grp <- df[,group] pcm_initial <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F) dat <- df dat$score <- rowSums(dat[,items_n]) nqt <- ifelse(length(unique(quantile(dat$score,seq(0,1,0.2))))==6,5,length(unique(quantile(dat$score,seq(0,1,0.2))))-1) dat$score_q5 <- cut(dat$score,unique(quantile(dat$score,seq(0,1,1/nqt))),labels=1:nqt,include.lowest=T) res.anova <- rep(NA,nbitems) pval <- rep(NA,nbitems) fval <- rep(NA,nbitems) for (i in items) { dat[,paste0('res_',i)] <- rowMeans(predict(pcm_initial)$stand.resid[,,i]) res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat)) pval[i] <- res.anova[[i]][1,"Pr(>F)"] fval[i] <- res.anova[[i]][1,'F value'] } if (verbose) { cat('DONE\n') cat('-----------------------------------------------------------\n') } res.items <- c() res.uniform <- c() k <- 1 while(any(pval<0.05/(nbitems_o-k+1))) { k <- k+1 if (verbose) { cat(paste('COMPUTING STEP',k,'\n')) cat('-----------------------------------------------------------\n') } res.item <- gsub("[a-z]", "",colnames(resp)[which.max(fval)]) res.items <- c(res.items,res.item) res.uni <- res.anova[[which.max(fval)]][3,"Pr(>F)"]>0.05 res.uniform <- c(res.uniform,res.uni) items_n <- c(items_n[items_n!=paste0('item',res.item)],paste0("item",res.item,c("noTT","TT"))) dat[,paste0("item",res.item,'TT')] <- dat[dat$TT==1,paste0('item',res.item)] dat[,paste0("item",res.item,'noTT')] <- dat[dat$TT==0,paste0('item',res.item)] resp <- dat[,items_n] grp <- dat[,group] pcm_while <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F) nbitems <- length(items_n) res.anova <- rep(NA,nbitems) pval <- rep(NA,nbitems) fval <- rep(NA,nbitems) for (i in 1:nbitems) { dat[,paste0('res_',i)] <- rowMeans(predict(pcm_while)$stand.resid[,,i]) res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat)) pval[i] <- res.anova[[i]][1,"Pr(>F)"] fval[i] <- res.anova[[i]][1,'F value'] } if (verbose) { cat('DONE\n') cat('-----------------------------------------------------------\n') } } if (verbose) { cat("DETECTED DIF ITEMS\n") cat('-----------------------------------------------------------\n') } if (length(res.items>0)) { results <- data.frame(dif.items=res.items, uniform=1*res.uniform) return(results) } else { if (verbose) { cat("No DIF was detected\n") } return(NULL) } } resali_LRT <- function(df=NULL,items=NULL,group=NULL,verbose=T) { if (verbose) { cat('-----------------------------------------------------------\n') cat('COMPUTING INITIAL PCM\n') cat('-----------------------------------------------------------\n') } nbitems <- length(items) nbitems_o <- nbitems items_n <- paste0('item',items) resp <- df[,items_n] grp <- df[,group] items_n_alt <- paste0(items_n,c("_TT","_noTT")) for (i in items_n) { df[df$TT==0,paste0(i,"_noTT")] <- df[df$TT==0,i] df[df$TT==1,paste0(i,"_TT")] <- df[df$TT==1,i] } resp_alt <- df[,items_n_alt] pcm_initial <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F) pcm_alt <- TAM::tam.mml(resp=resp_alt,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F) dat <- df dat$score <- rowSums(dat[,items_n]) nqt <- ifelse(length(unique(quantile(dat$score,seq(0,1,0.2))))==6,5,length(unique(quantile(dat$score,seq(0,1,0.2))))-1) dat$score_q5 <- cut(dat$score,unique(quantile(dat$score,seq(0,1,1/nqt))),labels=1:nqt,include.lowest=T) res.anova <- rep(NA,nbitems) pval <- rep(NA,nbitems) fval <- rep(NA,nbitems) for (i in items) { dat[,paste0('res_',i)] <- rowMeans(predict(pcm_initial)$stand.resid[,,i]) res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat)) pval[i] <- res.anova[[i]][1,"Pr(>F)"] fval[i] <- res.anova[[i]][1,'F value'] } if (verbose) { cat('DONE\n') cat('-----------------------------------------------------------\n') } res.items <- c() res.uniform <- c() k <- 1 if (anova(pcm_initial,pcm_alt)$p[1]<0.05) { while(any(pval<0.05/nbitems_o)) { k <- k+1 if (verbose) { cat(paste('COMPUTING STEP',k,'\n')) cat('-----------------------------------------------------------\n') } res.item <- gsub("[a-z]", "",colnames(resp)[which.max(fval)]) res.items <- c(res.items,res.item) res.uni <- res.anova[[which.max(fval)]][3,"Pr(>F)"]>0.05 res.uniform <- c(res.uniform,res.uni) items_n <- c(items_n[items_n!=paste0('item',res.item)],paste0("item",res.item,c("noTT","TT"))) dat[,paste0("item",res.item,'TT')] <- dat[dat$TT==1,paste0('item',res.item)] dat[,paste0("item",res.item,'noTT')] <- dat[dat$TT==0,paste0('item',res.item)] resp <- dat[,items_n] grp <- dat[,group] pcm_while <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F) nbitems <- length(items_n) res.anova <- rep(NA,nbitems) pval <- rep(NA,nbitems) fval <- rep(NA,nbitems) for (i in 1:nbitems) { dat[,paste0('res_',i)] <- rowMeans(predict(pcm_while)$stand.resid[,,i]) res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat)) pval[i] <- res.anova[[i]][1,"Pr(>F)"] fval[i] <- res.anova[[i]][1,'F value'] } if (verbose) { cat('DONE\n') cat('-----------------------------------------------------------\n') } } if (verbose) { cat("DETECTED DIF ITEMS\n") cat('-----------------------------------------------------------\n') } if (length(res.items>0)) { results <- data.frame(dif.items=res.items, uniform=1*res.uniform) return(results) } else { if (verbose) { cat("No DIF was detected\n") } return(NULL) } } else { if (verbose) { cat("No DIF was detected\n") } return(NULL) } }