.- help for ^reoprob^ (STB-59: sg158; STB-61: sg158.1) .- Random-effects ordered probit ----------------------------- ^reoprob^ depvar varlist [^if^ exp] [^in^ range] ^,^ [ ^i(^varname^)^ ^q^uadrat^(^#^)^ ^l^evel^(^#^)^ maximize_options ] This command shares the features of all estimation commands; see help @est@. To reset problem-size limits, see help @matsize@. Description ----------- ^reoprob^ estimates a random-effects ordered probit model for panel datasets using maximum likelihood estimation. The likelihood for each unit is approximated by Gauss-Hermite quadrature. Options ------- ^i(^varname^)^ specifies the variable corresponding to an independent unit (e.g., a subject id). ^i(^varname^)^ is not optional. ^quadrat(^#^)^ specifies the number of points to use for Gaussian-Hermite quadrature. It is optional, and the default is 12. Increasing this value improves accuracy, but also increases computation time. Computation time is roughly proportional to its value. ^level(^#^)^ specifies the confidence level, in percent, for confidence intervals. The default is ^level(95)^ or as set by ^set level^. maximize_options controls the maximization process and the display of information; see [R] maximize. ^nolog^ suppresses the display of the likelihood iterations. Use the ^trace^ option to view parameter convergence. The ^ltol(^#^)^ and ^tol(^#^)^ option can be used to loosen the convergence criterion (respectively 1e-7 and 1e-6 by default) during specification searches. ^iter(^#^)^ specifies the maximum number of iterations. Examples -------- . ^reoprob y x, i(id)^ . ^reoprob y x^ . ^reoprob y x, i(id) quad(24) nolog^ . ^reoprob y x, i(id) trace^ . ^reoprob^ Method ------ ^reoprob^ uses the d1 method (analytic first derviatives) of Stata's ^ml^ commands. See Butler and Moffitt (1982) for details about using Gauss-Hermite quadrature to approximate such integrals. Also see Green (2000) for information on how to estimate a basic ordered probit model. Author ------ Guillaume R. Frechette Ohio State University Department of Economics 410 Arps Hall 1945 North High Street Columbus, OH 43210-1172 Tel: (614) 688-4140 Fax: (614) 292-4192 e-mail: frechette.6@@osu.edu http://www.econ.ohio-state.edu/frechette/ Reference --------- Butler, J.S. and R. Moffitt. 1982. A computationally efficient quadrature procedure for the one-factor multinomial probit model. Econometrica 50: 761-764. Green, W. H. 2000. Econometric Analysis. Prentice Hall, New Jersey. pp. 875-878. Also see -------- Manual: ^[R] xt, [R] xtprobit, [R] maximize, [R] oprobit^ On-line: help for @xt@, @xtreg@