*! Version 1.0.1 November 22 2000, by Guillaume R. Frechette (STB-59: sg158) program define reop_ll version 6.0 args todo b lnf g tempvar theta1 F F1 F2 p db db1 db2 dr C tempname rho s2su u x w gr local nm1 = $S_n-1 local np1 = $S_n+1 local i = 1 while `i' < $S_n { tempname _cut`i' tempname g_cut`i' tempname g_cut1`i' tempname g_cut2`i' local i = `i'+1 } mleval `theta1' = `b', eq(1) local h 0 local i 1 local j 2 while `i' < $S_n { mleval `_cut`i'' = `b', eq(`j') scalar if `h'>0 { if `_cut`i''<=`_cut`h'' { scalar `_cut`h''=`_cut`i''-0.01 /* the above correction should not be needed in general, but it might preclude `bad' estimates if, for instance, one performs a random search */ } } local h = `h'+1 local i = `i'+1 local j = `j'+1 } mleval `rho' = `b', eq(`np1') scalar if `rho' >= 1 { scalar `rho' = 0.99 di "rho >= 1, set to rho = 0.99" } scalar `s2su' = sqrt(2*`rho'/(1 - `rho')) quietly { gen double `F' = . in 1 gen double `F1' = . in 1 gen double `F2' = . in 1 by $S_i: gen double `p' = cond(_n==_N,0,.) gen double `db' = 0 gen double `db1' = 0 gen double `db2' = 0 gen double `dr' = 0 gen double `C' = . local m 1 while `m' <= $S_quad { scalar `x' = $S_x[1,`m'] scalar `w' = $S_w[1,`m'] scalar `u' = `s2su'*`x' local condf "cond($S_lhs==0, normprob(`_cut1'-`theta1'-`u')" local i 1 local j 2 while `j' < $S_n { local condf "`condf', cond($S_lhs==`i', normprob(`_cut`j''-`theta1'-`u')-normprob(`_cut`i''-`theta1'-`u')" local i = `i'+1 local j = `j'+1 } local condf "`condf', 1-normprob(`_cut`nm1''-`theta1'-`u'))" local i 2 while `i' < $S_n { local i = `i'+1 local condf "`condf')" } replace `C' = `condf' replace `C' = 0.00000001 if `C' == 0 by $S_i: replace `F' = /* */ cond(_n==1,`C',`C'*`F'[_n-1]) replace `p' = `p' + `w'*`F' local condg1 "cond($S_lhs==0, 0" local condg2 "cond($S_lhs==0, -exp(-0.5*(`_cut1'-`theta1'-`u')^2)" local h 1 local i 2 while `i' < $S_n { local condg1 "`condg1', cond($S_lhs==`h', exp(-0.5*(`_cut`h''-`theta1'-`u')^2)" local condg2 "`condg2', cond($S_lhs==`h', -exp(-0.5*(`_cut`i''-`theta1'-`u')^2)" local h = `h'+1 local i = `i'+1 } local condg1 "`condg1', exp(-0.5*(`_cut`nm1''-`theta1'-`u')^2))" local condg2 "`condg2', 0)" local i 2 while `i' < $S_n { local i = `i'+1 local condg1 "`condg1')" local condg2 "`condg2')" } replace `F1' = `F' replace `F2' = `F' by $S_i: replace `F1' = `condg1'*`F1'[_N]/`C' by $S_i: replace `F2' = `condg2'*`F2'[_N]/`C' by $S_i: replace `F' = (`condg1'+`condg2')*`F'[_N]/`C' replace `db' = `db' + `w'*`F' replace `db1' = `db1' + `w'*`F1' replace `db2' = `db2' + `w'*`F2' replace `dr' = `dr' + `w'*`u'*`F' local m = `m' + 1 } tempname lp grps gen double `lp' = ln(`p'/sqrt(_pi)) by $S_i: gen byte `grps'=_n==_N sum `grps' if $ML_samp local N = r(sum) sum `lp' if $ML_samp, meanonly if r(N) !=`N' { scalar `lnf' = . exit } scalar `lnf' = r(sum) if `todo'==0|`lnf'==. { exit } by $S_i: replace `p' = `p'[_N] replace `db' = `db'/(sqrt(2*_pi)*`p') replace `db1' = -`db1'/(sqrt(2*_pi)*`p') replace `db2' = -`db2'/(sqrt(2*_pi)*`p') matrix vecaccum `g' = `db' $S_rhs, nocons local i 0 local j 1 while `j' < $S_n { capture { matrix vecaccum `g_cut1`j'' = `db1' if $S_lhs == `j' matrix vecaccum `g_cut2`j'' = `db2' if $S_lhs == `i' } if _rc { scalar `lnf' = . exit } matrix `g_cut`j'' = `g_cut1`j''+`g_cut2`j'' matrix `g' = `g', `g_cut`j'' local i = `i'+1 local j = `j'+1 } replace `dr' = sum(`dr'/`p') scalar `gr' = `dr'[_N]/(2*sqrt(2*_pi)*`rho'*(1-`rho')) matrix `g' = `g', `gr' } end