*! version 2.2 february2019 *! Myriam Blanchin - Priscilla Brisson *! construction ************************************************************************************************************ * ROSALI: RespOnse-Shift ALgorithm at Item-level * Response-shift detection based on Rasch models family * * Version 1 : December 21, 2016 (Myriam Blanchin) /*rspcm122016*/ * Version 1.1 : October 13, 2017 (Myriam Blanchin) /*option: MODA, automatic recoding of unused response categories*/ * Version 2 : April, 2018 (Myriam Blanchin - Priscilla Brisson) /*option: GROUP, dichotomous group variable*/ * Version 2.1 : October, 2018 (Myriam Blanchin - Priscilla Brisson) /* Version 1.1 + Version 2 */ * Version 2.2 : February, 2019 (Priscilla Brisson) /* option nodif, keep name of variables, optimization */ * * Myriam Blanchin, SPHERE, Faculty of Pharmaceutical Sciences - University of Nantes - France * myriam.blanchin@univ-nantes.fr * * Priscilla Brisson, SPHERE, Faculty of Pharmaceutical Sciences - University of Nantes - France * priscilla.brisson@univ-nantes.fr * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ************************************************************************************************************/ program define rosali22, rclass timer clear 1 timer on 1 syntax varlist(min=2 numeric) [if] [in] [,ID(string) MODA(string) GROUP(string) NODIF] version 15 tempfile saverspcm qui save `saverspcm',replace local save1=_rc if "`if'"!=""|"`in'"!="" { qui keep `if' `in' } /**************************************************************************/ set more off set matsize 5000 local id "`id'" local gp "`group'" tokenize `varlist' local nbitems:word count `varlist' /* Vérif nb d'items pair */ local mod=mod(`nbitems',2) if `mod'!=0 { di in red "You must enter an even number of items : the first half of the items represents the items at time 1 and the second half the items at time 2" error 198 exit } local nbitems=`nbitems'/2 * Vérification du format wide if "`id'" == "" { di in red "You must enter an identifiant ({hi:id} option). Please correct this option." error 198 exit } qui tab `id' local nbpat = r(r) local nbline = _N if `nbpat' != `nbline' { di in red "Data must be in wide format : one line for one patient. Please correct this." error 198 exit } if "`group'"=="" & "`nodif'"!="" { di in red "nodif can only be used with the group option ({hi:nodif} option). Please correct this option." error 198 exit } if "`moda'"!="" { local listmoda:word count `moda' if `listmoda'!=`nbitems' { di in red "You have indicated a number of categories ({hi:moda} option) different of the number of items. Please correct this option." if `listmoda' < `nbitems' { error 122 exit } if `listmoda' > `nbitems' { error 123 exit } } } local nbc: word count `group' if `nbc' >= 2 { di in red "Only one variable can be used for group option ({hi:group} option). Please correct this option." error 198 exit } /* Vérif qu'il y a 2 groupes si l'option groupe est choisie */ if "`group'"!="" { qui tab `group' local nbgrp = r(r) if `nbgrp' != 2 { di in red "The option group must be used with only 2 groups ({hi:group} option). Please correct this option." error 420 exit } } /* recoder la variable de groupe en 0, 1*/ if "`group'"!="" { qui tab `gp', matrow(rep) qui matrix list rep if rep[1,1]+rep[2,1] != 1 & rep[1,1]*rep[2,1] != 0 { forvalues i=1/`=rowsof(rep)'{ qui replace `gp'=`i'-1 if `gp'==rep[`i',1] di "WARNING : `gp' `=rep[`i',1]' is now `gp' `=`i'-1' " } } forvalues g = 0/1 { qui tab `gp' if `gp' == `g' local nbp_gp`g' = r(N) } } /*item rename*/ /* Items au temps 1 : 1 à nbitems ``j'' Items au temps 2 : nbitems à 2*nbitems ``=`j'+`nbitems''' Si t varie, puis num item : ``=(`t'-1)*`nbitems'+`j''' */ di di "WARNING : Automatic recoding, so that the first response category is 0. see {help rosali22:help rosali22}." di /*verif modalités répondues*/ if "`gp'" == "" { // Si pas d'option groupe forvalues j = 1 / `nbitems' { local recoda_`j' = 0 qui tab ``j'' // Récupération des infos moda du temps 1 local nbm`j'_t1 = r(r) qui su ``j'' local minm`j'_t1 = r(min) local maxm`j'_t1 = r(max) qui tab ``=`j'+`nbitems''' // Récupération des infos moda du temps 2 local nbm`j'_t2 = r(r) qui su ``=`j'+`nbitems''' local minm`j'_t2 = r(min) local maxm`j'_t2 = r(max) local minm_`j' = min(`minm`j'_t1',`minm`j'_t2') // Info moda pour l'item j local maxm_`j' = max(`maxm`j'_t1',`maxm`j'_t2') local nbm_`j' = `=`maxm_`j''-`minm_`j''' //Recodage des réponses en 0, 1, 2, etc... forvalues r = 0/`=`maxm_`j''-1' { qui replace ``j'' = `r' if ``j'' == `=`r'+`minm_`j''' qui replace ``=`j'+`nbitems''' = `r' if ``=`j'+`nbitems''' == `=`r'+`minm_`j''' } // Vérif. Que toutes les modas sont utilisées & concordance entre temps forvalues m = 0/`nbm_`j'' { qui count if ``j'' == `m' local nb_rn1 = r(N) qui count if ``=`j'+`nbitems''' == `m' local nb_rn2 = r(N) local nb_rn = min(`nb_rn1',`nb_rn2') if `nb_rn' == 0 { // Une moda n'est pas utilisée local recoda_`j' = 1 if `m' == 0 | `m' <= `minm`j'_t1' | `m' <= `minm`j'_t2' { // La moda 0 ou les moda min ne sont pas utilisées local stop = 1 forvalues k = 1/`=`nbm_`j''-`m'' { qui count if ``j'' == `=`m' + `k'' local v`k'1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' local v`k'2 = r(N) if (`v`k'1' != 0 | `v`k'2' != 0) & `stop' != 0 { qui replace ``j''= `=`m'+`k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m'+`k'' if ``=`j'+`nbitems'''==`m' di "WARNING: item ``j'': answers `m' and `=`m'+`k'' merged " local stop = 0 } } } else if `m' >= `maxm`j'_t1' | `m' >= `maxm`j'_t2' | `m' == `maxm_`j'' { // La (ou les) moda max ne sont pas utilisée(s) local stop = 1 forvalues k = 1/`m' { qui count if ``j'' == `=`m' - `k'' local v`k'1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' local v`k'2 = r(N) if (`v`k'1' != 0 | `v`k'2' != 0) & `stop' != 0 { qui replace ``j''=`=`m' - `k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m' - `k'' if ``=`j'+`nbitems'''==`m' di "WARNING: item ``j'': answers `m' and `=`m'-`k'' merged" local stop = 0 } } } else { local hour=real(substr("$S_TIME",1,2)) local min=real(substr("$S_TIME",4,2)) local sec=real(substr("$S_TIME",7,2)) local jour=real(substr("$S_DATE",1,2)) global seed=784556+`sec'*1000000+`min'*10000+`hour'*100+`jour' set seed $seed if runiform()>0.5{ // Tirage au sort pour regrouper local stop = 1 forvalues k = 1/`m' { qui count if ``j'' == `=`m' - `k'' local v`k'1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' local v`k'2 = r(N) if (`v`k'1' != 0 | `v`k'2' != 0) & `stop' != 0 { qui replace ``j''= `=`m'-`k'' if ``j''==`m' qui replace ``=`j'+`nbitems''' =`=`m'-`k'' if ``=`j'+`nbitems''' ==`m' di "WARNING: item ``j'': answers `m' and `=`m'-`k'' merged" local stop = 0 } } } else { local stop = 1 forvalues k = 1/`=`nbm_`j''-`m'' { qui count if ``j'' == `=`m' + `k'' local v`k'1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' local v`k'2 = r(N) if (`v`k'1' != 0 | `v`k'2' != 0) & `stop' != 0 { qui replace ``j''=`=`m' + `k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m' + `k'' if ``=`j'+`nbitems'''==`m' di "WARNING: item ``j'': answers `m' and `=`m'+`k'' merged" local stop = 0 } else { if `stop' != 0 { qui replace ``j''= `nbm_`j'' if ``j''==`m' qui replace ``=`j'+`nbitems'''= `nbm_`j'' if ``=`j'+`nbitems'''==`m' di "WARNING: item answers ``j'': `m' and `nbm_`j'' merged" local stop = 0 } } } } } } } } } else { // Cas où l'option groupe est utilisée forvalues j = 1 / `nbitems' { local recoda_`j' = 0 qui tab ``j'' if `gp' == 0 // Récupération des infos moda du temps 1pour chaque groupe local nbm`j'_t1_g0 = r(r) qui su ``j'' if `gp' == 0 local minm`j'_t1_g0 = r(min) local maxm`j'_t1_g0 = r(max) qui tab ``j'' if `gp' == 1 local nbm`j'_t1_g1 = r(r) qui su ``j'' if `gp' == 1 local minm`j'_t1_g1 = r(min) local maxm`j'_t1_g1 = r(max) qui tab ``=`j'+`nbitems''' if `gp' == 0 // Récupération des infos moda du temps 2 pour chaque groupe local nbm`j'_t2_g0 = r(r) qui su ``=`j'+`nbitems''' if `gp' == 0 local minm`j'_t2_g0 = r(min) local maxm`j'_t2_g0 = r(max) qui tab ``=`j'+`nbitems''' if `gp' == 1 local nbm`j'_t2_g1 = r(r) qui su ``=`j'+`nbitems''' if `gp' == 1 local minm`j'_t2_g1 = r(min) local maxm`j'_t2_g1 = r(max) local minm_`j' = min(`minm`j'_t1_g0',`minm`j'_t2_g0',`minm`j'_t1_g1',`minm`j'_t2_g1') // Info moda pour l'item j local maxm_`j' = max(`maxm`j'_t1_g0',`maxm`j'_t2_g0',`maxm`j'_t1_g1',`maxm`j'_t2_g1') local nbm_`j' = `=`maxm_`j''-`minm_`j''+1' //Recodage des réponses en 0, 1, 2, etc... forvalues r = 0/`=`maxm_`j''-1' { qui replace ``j'' = `r' if ``j'' == `=`r'+`minm_`j''' qui replace ``=`j'+`nbitems''' = `r' if ``=`j'+`nbitems''' == `=`r'+`minm_`j''' } // Vérif. Que toutes les modas sont utilisées & concordance entre temps forvalues m = 0/`=`nbm_`j''-1' { qui count if ``j'' == `m' & `gp' == 0 local nb_rn1_g0 = r(N) qui count if ``j'' == `m' & `gp' == 1 local nb_rn1_g1 = r(N) qui count if ``=`j'+`nbitems''' == `m' & `gp' == 0 local nb_rn2_g0 = r(N) qui count if ``=`j'+`nbitems''' == `m' & `gp' == 1 local nb_rn2_g1 = r(N) local nb_rn = min(`nb_rn1_g0',`nb_rn2_g0',`nb_rn1_g1',`nb_rn2_g1') if `nb_rn' == 0 { // Une moda n'est pas utilisée local recoda_`j' = 1 if `m' == 0 | `m' < `minm`j'_t1_g0' | `m' < `minm`j'_t2_g0' | `m' < `minm`j'_t1_g1' | `m' < `minm`j'_t2_g1' { // La moda 0 n'est pas utilisée local stop = 1 forvalues k = 1/`=`nbm_`j''-`m'' { qui count if ``j'' == `=`m' + `k'' & `gp' == 0 local v`k'1_0 = r(N) qui count if ``j'' == `=`m' + `k'' & `gp' == 1 local v`k'1_1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' & `gp' == 0 local v`k'2_0 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' & `gp' == 1 local v`k'2_1 = r(N) if (`v`k'1_0' != 0 | `v`k'2_0' != 0 | `v`k'1_1' != 0 | `v`k'2_1' != 0) & `stop' != 0 { qui replace ``j''= `=`m'+`k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m'+`k'' if ``=`j'+`nbitems'''==`m' di "WARNING: item ``j'': answers `m' and `=`m'+`k'' merged" local stop = 0 } } } else if `m' == `=`nbm_`j''-1' | `m' >= `maxm`j'_t2_g0' | `m' >= `maxm`j'_t1_g1' | `m' >= `maxm`j'_t2_g1' { // La moda max n'est pas utilisée local stop = 1 forvalues k = 1/`=`m'' { qui count if ``j'' == `=`m' - `k'' & `gp' == 0 local v`k'1_0 = r(N) qui count if ``j'' == `=`m' - `k'' & `gp' == 1 local v`k'1_1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' & `gp' == 0 local v`k'2_0 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' & `gp' == 1 local v`k'2_1 = r(N) if (`v`k'1_0' != 0 | `v`k'2_0' != 0 | `v`k'1_1' != 0 | `v`k'2_1' != 0 ) & `stop' != 0 { qui replace ``j''= `=`m' - `k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''= `=`m' - `k'' if ``=`j'+`nbitems'''==`m' di "WARNING: item ``j'': answers `m' and `=`m'-`k'' merged" local stop = 0 } } } else { // Moda central non utilisée local hour=real(substr("$S_TIME",1,2)) local min=real(substr("$S_TIME",4,2)) local sec=real(substr("$S_TIME",7,2)) local jour=real(substr("$S_DATE",1,2)) global seed=784556+`sec'*1000000+`min'*10000+`hour'*100+`jour' set seed $seed if runiform()>0.5{ // Tirage au sort pour regrouper local stop = 1 forvalues k = 1/`m' { qui count if ``j'' == `=`m' - `k'' & `gp' == 0 local v`k'1_0 = r(N) qui count if ``j'' == `=`m' - `k'' & `gp' == 1 local v`k'1_1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' & `gp' == 0 local v`k'2_0 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' - `k'' & `gp' == 1 local v`k'2_1 = r(N) if (`v`k'1_0' != 0 | `v`k'2_0' != 0 | `v`k'1_1' != 0 | `v`k'2_1' != 0) & `stop' != 0 { qui replace ``j''= `=`m'-`k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m'-`k'' if ``=`j'+`nbitems'''==`m' di "WARNING: item ``j'': answers `m' and `=`m'-`k'' merged" local stop = 0 } } } else { local stop = 1 forvalues k = 1/`=`nbm_`j''-`m'' { qui count if ``j'' == `=`m' + `k'' & `gp' == 0 local v`k'1_0 = r(N) qui count if ``j'' == `=`m' + `k'' & `gp' == 1 local v`k'1_1 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' & `gp' == 0 local v`k'2_0 = r(N) qui count if ``=`j'+`nbitems''' == `=`m' + `k'' & `gp' == 1 local v`k'2_1 = r(N) if (`v`k'1_0' != 0 | `v`k'2_0' != 0 | `v`k'1_1' != 0 | `v`k'2_1' != 0) & `stop' != 0{ qui replace ``j''=`=`m' + `k'' if ``j''==`m' qui replace ``=`j'+`nbitems'''=`=`m' + `k'' if ``=`j'+`nbitems'''==`m' di "WARNING: item ``j'': answers `m' and `=`m'+`k'' merged" local stop = 0 } else { if `stop' != 0 { qui replace ``j''= `nbm_`j'' if ``j''==`m' qui replace ``=`j'+`nbitems'''= `nbm_`j'' if ``=`j'+`nbitems'''==`m' di "WARNING: item ``j'': answers `m' and `nbm_`j'' merged" local stop = 0 } } } } } } } } } forvalues j =1/`nbitems' { qui tab ``j'', matrow(rec) // Récupération des infos moda du temps 1 local nbm`j'_t1 = r(r) qui tab ``=`j'+`nbitems''' // Récupération des infos moda du temps 2 local nbm`j'_t2 = r(r) local nbm_`j' = max(`nbm`j'_t1', `nbm`j'_t2') //Recodage des réponses en 0, 1, 2, etc... forvalues r = 0/`=`nbm_`j''-1' { qui replace ``j'' = `r' if ``j'' == `=rec[`=`r'+1',1]' qui replace ``=`j'+`nbitems''' = `r' if ``=`j'+`nbitems''' == `=rec[`=`r'+1',1]' } } forvalues j = 1/`nbitems' { if `recoda_`j'' == 1 { if "`gp'" != "" { di di "``j'' & ``=`j'+`nbitems''' after automatic recoding :" di tab ``j'' `gp' tab ``=`j'+`nbitems''' `gp' } else { di di "``j'' & ``=`j'+`nbitems''' after automatic recoding :" di tab ``j'' tab ``=`j'+`nbitems''' } di di } } /* Calcul de nbmoda & nbdif */ forvalues j = 1/`nbitems' { qui tab ``j'' local nbmoda_`j' = r(r) local nbdif_`j' = r(r) - 1 } local maxdif = 0 local nbmoda_sum = 0 forvalues j = 1/`nbitems' { if `maxdif' < `nbdif_`j'' { local maxdif = `nbdif_`j'' } local nbmoda_sum = `nbmoda_sum' + `nbdif_`j'' } /* Au moins 2 mmoda par item */ forvalues j=1/`nbitems' { if `nbmoda_`j'' == 1 { di in red "``j'' have only one response category, each item need at least 2 response categories" error 198 exit } } /* Vérification moda théorique VS moda réelles -> CONSTAT */ if "`moda'" != "" { forvalues j=1/`nbitems' { local nbmoda`j':word `j' of `moda' if `nbmoda`j'' != `nbmoda_`j'' { //nbmodaj = nb moda annoncé par l'uti. (théorique) VS nbmoda_j = nb moda utilisée (réel) di " WARNING : `nbmoda`j'' response categories exist for item ``j'' but only `nbmoda_`j'' seem to be used" local recoda_`j' = 1 } } } local coln "" forvalues j =1 /`nbitems' { local coln "`coln' ``j''" } matrix nbmod = J(2,`nbitems',.) matrix colnames nbmod = `coln' matrix rownames nbmod = NbModa Recoding forvalues j = 1/`nbitems' { matrix nbmod[1,`j'] = `nbmoda_`j'' matrix nbmod[2,`j'] = `recoda_`j'' } *Erreur si plus de 200 difficultés local nb_test = 0 forvalues j=1/`nbitems' { local nb_test = `nb_test'+`nbmoda_`j'' -1 } if `nb_test' >= 200 { di in red "The number of items difficulties must be less than 200 ({hi:moda} option option). Please correct this option." error 198 exit } local nbitp = 0 forvalues j = 1/`nbitems' { if `nbmoda_`j'' >= 2 { local nbitp = `nbitp' + 1 } } /********************************* * AFFICHAGE INITIAL *********************************/ di _col(5) "{hline 78}" di _col(5) in ye %~30s "Time 1" _col(30) %~30s "Time 2" _col(55) "Nb of Responses Cat." di _col(5) "{hline 78}" forvalues j=1/`nbitems' { di in gr _col(5) %~30s abbrev("``j''",20) _col(30) %~30s abbrev("``=`j'+`nbitems'''",20) _col(75) `nbmoda_`j'' } di _col(5) "{hline 78}" if "`group'" != "" { di _col(10) "Nb. of patients : " abbrev("`gp'",20) " 0 = `nbp_gp0' ;", abbrev("`gp'",20) " 1 = `nbp_gp1'" di _col(5) "{hline 78}" } else { di _col(20) "Nb. of patients : `nbpat'" di _col(5) "{hline 78}" } di if `nbitems' == 1 { di in red "2 items at least is necessary to detect DIF and/or RC at item level." error 198 exit } forvalues j = 1/`nbitems' { if `nbmoda_`j'' == 2 { di "WARNING: ``j'' have only 2 response categories, the type uniform or non-uniform can't be detected." } if `nbmoda_`j'' == 1 { di in red "``j'' uses only `nbmoda_`j'' response category, each item need at least 2 response categories used." error 198 exit } if `nbmoda_`j'' == 0 { di in red "``j'' uses no response category, each item needs at least 2 response categories used." error 198 exit } } di if "`group'" != "" { di _col(2) in ye "For all models : - mean of latent trait of `gp' 0 at time 1 is constrained at 0" di _col(19) "- Equality of variances between groups" di } else { di _col(2) in ye "For all models : mean of latent trait at time 1 is constrained at 0" di } /********************************* * DEFINITION DES CONTRAINTES *********************************/ if "`group'"!="" { // Contraintes si option groupe *EGALITE ENTRE GROUPES A T1 (1-200) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=0+`maxdif'*(`j'-1)+`p'' [`p'.``j'']0bn.`gp'=[`p'.``j'']1.`gp' } } *DIF UNIFORME A T1 (201-400) forvalues j=1/`nbitems'{ forvalues p=2/`nbdif_`j''{ constraint `=200+`maxdif'*(`j'-1)+`p'' [`p'.``j'']1.`gp'-[`p'.``j'']0bn.`gp'=`p'*[1.``j'']1.`gp'-`p'*[1.``j'']0bn.`gp' } } *EGALITES ENTRE T1 et T2, groupe 0 (401-600) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=400+`maxdif'*(`j'-1)+`p'' [`p'.``j'']0bn.`gp'=[`p'.``=`j'+`nbitems''']0bn.`gp' } } *EGALITES ENTRE T1 et T2, groupe 1 (601-800) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=600+`maxdif'*(`j'-1)+`p'' [`p'.``j'']1.`gp'=[`p'.``=`j'+`nbitems''']1.`gp' } } * RC COMMUNE (801-1000) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=800+`maxdif'*(`j'-1)+`p'' [`p'.``=`j'+`nbitems''']0bn.`gp'-[`p'.``j'']0bn.`gp'=[`p'.``=`j'+`nbitems''']1.`gp'-[`p'.``j'']1.`gp' } } * RC UNIFORME, groupe 0 (1001-1200) forvalues j=1/`nbitems'{ forvalues p=2/`nbdif_`j''{ constraint `=1000+`maxdif'*(`j'-1)+`p'' `p'*([1.``=`j'+`nbitems''']0bn.`gp'-[1.``j'']0bn.`gp')=[`p'.``=`j'+`nbitems''']0bn.`gp'-[`p'.``j'']0bn.`gp' } } * RC UNIFORME, groupe 1 (1201-1400) forvalues j=1/`nbitems'{ forvalues p=2/`nbdif_`j''{ constraint `=1200+`maxdif'*(`j'-1)+`p'' `p'*([1.``=`j'+`nbitems''']1.`gp'-[1.``j'']1.`gp')=[`p'.``=`j'+`nbitems''']1.`gp'-[`p'.``j'']1.`gp' } } *Sans interaction temps x groupe constraint 1999 [/]:mean(THETA2)#1.`gp'-[/]:mean(THETA2)#0bn.`gp'=[/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp' } else { //Contraintes si pas d'option groupe *EGALITE ENTRE T1 et T2 (401-600) forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ constraint `=400+`maxdif'*(`j'-1)+`p'' [`p'.``j'']:_cons = [`p'.``=`j'+`nbitems''']:_cons } } *RC UNIFORME (1001-1200) forvalues j=1/`nbitems'{ forvalues p=2/`nbdif_`j''{ constraint `=1000+`maxdif'*(`j'-1)+`p'' `p'*([1.``=`j'+`nbitems''']:_cons - [1.``j'']:_cons)=[`p'.``=`j'+`nbitems''']:_cons -[`p'.``j'']:_cons } } } /********************************* * MATRICE DES RESULTATS *********************************/ matrix dif_rc=J(`nbitems',8,.) matrix colnames dif_rc=DIFT1 DIFU RC RC_DIF RCG0 RCUG0 RCG1 RCUG1 local rown "" forvalues j =1 /`nbitems' { local rown "`rown' ``j''" } matrix rownames dif_rc = `rown' *Nb modalité max local nbdif_max = 0 forvalues j=1/`nbitems' { if `nbdif_max' < `nbdif_`j'' { local nbdif_max = `nbdif_`j'' } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////// PARTIE 1 : DIF A T1 ? //////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// if "`group'"!="" & "`nodif'"=="" { // PARTIE 1 = Slmt si option group & pas de "nodif" di _dup(59) "_ " di di _col(5) in ye "PART 1: DETECTION OF DIFFERENCE IN ITEM DIFFICULTIES BETWEEN GROUPS AT FIRST TIME OF MEASUREMENT" ********************************* ** MODEL B ** ********************************* local model "" forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ local model "`model' (`p'.``j''<-THETA@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading cons) var(0: THETA@v) var(1:THETA@v) /* Stockage des estimations du modèle */ estimates store modeldifB matrix val_mB = r(table) matrix esti_B = e(b) /* Calcul des difficultés d'item (delta_j) */ matrix delta_mB=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC "`name_partOneC' delta_`p'_gp`g'" } } local name_partOneL "" forvalues j=1/`nbitems' { local name_partOneL "`name_partOneL' ``j''" } matrix colnames delta_mB = `name_partOneC' matrix rownames delta_mB = `name_partOneL' matrix delta_mB_se=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC_se "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC_se "`name_partOneC_se' delta_`p'_gp`g'_se" } } matrix colnames delta_mB_se = `name_partOneC_se' matrix rownames delta_mB_se = `name_partOneL' forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues g=0/1{ qui lincom -[`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mB=r(estimate) local delta`j'_`p'g`g'mB_se=r(se) if `p'>1{ qui lincom [`=`p'-1'.``j'']:`g'.`gp' - [`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mB = r(estimate) local delta`j'_`p'g`g'mB_se = r(se) } matrix delta_mB[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mB' matrix delta_mB_se[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mB_se' } } } matrix var_mB = (val_mB[1,"/var(THETA)#0bn.`gp'"]\val_mB[2,"/var(THETA)#0bn.`gp'"]) /*group effect*/ qui lincom [/]:mean(THETA)#1.`gp'-[/]:mean(THETA)#0bn.`gp' local geffmB=r(estimate) local segeffmB=r(se) qui test [/]:mean(THETA)#1.`gp'-[/]:mean(THETA)#0bn.`gp'=0 local gcmBp=r(p) local gcmBchi=r(chi2) local gcmBdf=r(df) ********************************* ** MODEL A ** ********************************* local model "" forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ local model "`model' (`p'.``j''<-THETA@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading means) var(0: THETA@v) var(1:THETA@v) from(esti_B, skip) /* Stockage des estimations du modèle */ estimates store modeldifA matrix val_mA = r(table) matrix esti_A = e(b) /* Calcul des difficultés d'item (delta_j) */ matrix delta_mA=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC "`name_partOneC' delta_`p'_gp`g'" } } local name_partOneL "" forvalues j=1/`nbitems' { local name_partOneL "`name_partOneL' ``j''" } matrix colnames delta_mA = `name_partOneC' matrix rownames delta_mA = `name_partOneL' matrix delta_mA_se=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC_se "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC_se "`name_partOneC_se' delta_`p'_gp`g'_se" } } matrix colnames delta_mA_se = `name_partOneC_se' matrix rownames delta_mA_se = `name_partOneL' forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues g=0/1{ qui lincom -[`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mA=r(estimate) local delta`j'_`p'g`g'mA_se=r(se) if `p'>1{ qui lincom [`=`p'-1'.``j'']:`g'.`gp' - [`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mA = r(estimate) local delta`j'_`p'g`g'mA_se = r(se) } matrix delta_mA[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mA' matrix delta_mA_se[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mA_se' } } } //Variance et se mA matrix var_mA = (val_mA[1,"/var(THETA)#0bn.`gp'"]\val_mA[2,"/var(THETA)#0bn.`gp'"]) ************************************************************* ***********************AFFICHAGE***************************** ************************************************************* //Affichage modèle A di di in ye "PROCESSING STEP A" di /* Affichage des estimations des difficultés modèle A */ di _col(5) in ye "{ul:MODEL A:} No group effect: mean of latent trait of group 1 = mean of latent trait of group 0," di _col(7) in ye "all item difficulties are freely estimated in both groups" di di _col(10) in ye "Item difficulties estimates (s.e.)" di _col(10) "{hline 70}" di _col(30) in ye abbrev("`gp'",20) "=0" _col(60) abbrev("`gp'",20) "=1" di _col(10) "{hline 70}" forvalues j=1/`nbitems' { di in ye _col(10) "``j''" forvalues p=1/`nbdif_`j'' { di in gr _col(10) "`p'" _col(30) %6.2f `delta`j'_`p'g0mA' %6.2f " (" %3.2f `delta`j'_`p'g0mA_se' ")" _col(60) %6.2f `delta`j'_`p'g1mA' " (" %3.2f `delta`j'_`p'g1mA_se' ")" } } di _col(10) "{hline 70}" /* Affichage des estimations sur le trait latent du modèle A */ di di _col(10) in ye "Latent trait distribution estimates" di _col(10) "{hline 65}" di _col(45) in ye "Estimate" _col(60) "Standard error" di _col(10) "{hline 65}" di _col(10) in ye "Variance" in gr _col(45) %6.2f `=var_mA[1,1]' _col(62) %6.2f `=var_mA[2,1]' di _col(10) in ye "Group effect (mean gp 1)" in gr _col(44) %6.2f "0 (constrained)" di _col(10) "{hline 65}" //*Affichage modèle B di di in ye "PROCESSING STEP B" di /* Affichage des estimations des difficultés modèle B */ di _col(5) in ye "{ul:MODEL B:} Group effect estimated: mean of latent trait of group 1 free estimated," di _col(7) in ye "Same item difficulties estimated between groups" di di _col(10) in ye "Item difficulties estimates (s.e.)" di _col(10) "{hline 70}" di _col(30) in ye abbrev("`gp'",20) "=0" _col(60) abbrev("`gp'",20) "=1" di _col(10) "{hline 70}" forvalues j=1/`nbitems' { di in ye _col(10) "``j''" forvalues p=1/`nbdif_`j'' { di in gr _col(10) "`p'" _col(30) %6.2f `delta`j'_`p'g0mB' " (" %3.2f `delta`j'_`p'g0mB_se' ")" _col(60) %6.2f `delta`j'_`p'g1mB' " (" %3.2f `delta`j'_`p'g1mB_se' ")" } } di _col(10) "{hline 70}" /* Affichage des estimations sur le trait latent du modèle B */ di di _col(10) in ye "Latent trait distribution estimates" di _col(10) "{hline 80}" di _col(45) in ye "Estimate" _col(60) "Standard error" _col(77) "P-value" di _col(10) "{hline 80}" di _col(10) in ye "Variance" in gr _col(44) %6.2f `=var_mB[1,1]' _col(62) %6.2f `=var_mB[2,1]' di _col(10) in ye "Group effect (mean gp 1)" in gr _col(44) %6.2f `geffmB' _col(62) %6.2f `segeffmB' _col(77) %6.4f `gcmBp' di _col(10) "{hline 80}" di ***************************************************** * Modèle A vs Modèle B * ***************************************************** qui lrtest modeldifA modeldifB local diftestp=r(p) local diftestchi=r(chi2) local diftestdf=r(df) //affichage lrtest di _col(10) in ye "LIKELIHOOD-RATIO TEST MODEL A VS MODEL B : " di _col(10) "{hline 50}" di _col(10) in ye "Chi-square" _col(30) "DF" _col(50) "P-value" di _col(10) in gr %6.2f `diftestchi' _col(30) %2.0f `diftestdf' _col(50) %6.4f `diftestp' di _col(10) "{hline 50}" if `diftestp'<0.05{ di _col(10) in ye "DIFFERENCE IN ITEM DIFFICULTIES BETWEEN GROUPS LIKELY" } else{ di _col(10) in ye "NO DIFFERENCE BETWEEN GROUPS DETECTED" } ********************************* *************MODEL C************* ********************************* // Etape itérative si lrtest significatif local nb_stepC = 0 if `diftestp'<0.05{ /*If pvalue(LRtest)<0.05 then step C*/ di di in ye "PROCESSING STEP C" di /*test DIF pour chaque item*/ local boucle = 1 local stop = 0 while `boucle'<=`=`nbitp'-1' & `stop'==0{ /*on s'arrête quand on a libéré du DIF sur (tous les items-1) ou lorsqu'il n'y a plus de tests significatifs*/ local nb_stepC = `boucle' local pajust=0.05/`=`nbitp'+1-`boucle'' /*réinitialisation de la matrice de test*/ matrix test_difu_`boucle'=J(`nbitems',3,.) matrix colnames test_difu_`boucle'=chi_DIFU df_DIFU pvalueDIFU matrix test_dif_`boucle'=J(`nbitems',3,.) matrix colnames test_dif_`boucle'=chi_DIF df_DIF pvalueDIF local nbsig=0 local minpval=1 local itemdif=0 di _col(10) "{hline 70}" di _col(10) in ye "Loop `boucle'" _col(50) "Adjusted alpha: " %6.4f `pajust' di di in ye _col(40) "Chi-Square" _col(55) "DF" _col(60) "P-Value" /*boucle de test*/ forvalues j=1/`nbitems'{ //if `nbdif_`j'' > 2 { local model "" local listconst "" if dif_rc[`j',1]==. | dif_rc[`j',1]==0 { /*si pas de DIF déjà détecté sur l'item j*/ /*on libère le DIF de l'item i: pas de contraintes*/ forvalues k=1/`nbitems'{ /*contraintes pour les autres items (si DIF NU sur item k, pas de contraintes*/ if `k'!=`j' & `nbmoda_`j'' >= 2 { if dif_rc[`k',1]==. | dif_rc[`k',1]==0 {/*pas de DIF sur item k: contraintes 1-200*/ forvalues p=1/`nbdif_`k''{ qui local listconst "`listconst' `=0+`maxdif'*(`k'-1)+`p''" qui constraint list `=0+`maxdif'*(`k'-1)+`p'' } } else{ if dif_rc[`k',2]!=. & dif_rc[`k',2]!= 0 & `nbmoda_`k'' > 2 { /*DIF U: contraintes 201-400*/ forvalues p=2/`nbdif_`k''{ qui local listconst "`listconst' `=200+`maxdif'*(`k'-1)+`p''" qui constraint list `=200+`maxdif'*(`k'-1)+`p'' } } } } } forvalues jj=1/`nbitems'{ forvalues p=1/`nbdif_`jj''{ local model "`model' (`p'.``jj''<-THETA@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) var(0: THETA@v) var(1:THETA@v) constraint(`listconst') from(esti_B) estimates store modeldif3b`boucle'it`i' ************************* *****test DIF item i***** ************************* qui test [1.``j'']0bn.`gp'=[1.``j'']1.`gp' if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui test [`p'.``j'']0bn.`gp'=[`p'.``j'']1.`gp', acc } } matrix test_dif_`boucle'[`j',1]=(r(chi2),r(df),r(p)) /* Test DIF Uniforme */ if `nbmoda_`j'' > 2 { qui test 2*([1.``j'']0bn.`gp'-[1.``j'']1.`gp')=[2.``j'']0bn.`gp'-[2.``j'']1.`gp' forvalues p=3/`nbdif_`j''{ qui test `p'*([1.``j'']0bn.`gp'-[1.``j'']1.`gp')=[`p'.``j'']0bn.`gp'-[`p'.``j'']1.`gp', acc } matrix test_difu_`boucle'[`j',1]=(r(chi2), r(df), r(p)) } if test_dif_`boucle'[`j',3]<`pajust'{/*si DIF sur item i*/ local ++nbsig if test_dif_`boucle'[`j',3]<`minpval'{ local minpval=test_dif_`boucle'[`j',2] local itemdif=`j' } } di in ye _col(12) %-30s abbrev("``j'' :",22) in gr _col(40) %6.3f test_dif_`boucle'[`j',1] _col(55) test_dif_`boucle'[`j',2] _col(60) %6.4f test_dif_`boucle'[`j',3] } } /*si nb de tests significatifs=0, on arrête*/ if `nbsig'==0{ local stop=1 if `boucle' == 1 { di di _col(20) in ye ">>> No significant test: no difference between groups detected, no DIF detected" di _col(10) "{hline 70}" } else { di di _col(20) in ye ">>> No other significant tests" di _col(10) "{hline 70}" } } else{/*si nb de tests significatifs>0, mise à jour de la matrice de résultats*/ matrix dif_rc[`itemdif',1]=`boucle' di _col(15) _dup(60) "-" di _col(15) in ye "Difference between groups on ``itemdif'' at time 1" if `nbmoda_`itemdif'' > 2 { di di _col(40) "Chi-Square" _col(55) "DF" _col(60) "P-value" di _col(15) in ye "Uniform ? " in gr _col(40) %4.2f `=test_difu_`boucle'[`itemdif',1]' _col(55) `=test_difu_`boucle'[`itemdif',2]' _col(60) %4.2f `=test_difu_`boucle'[`itemdif',3]' if test_difu_`boucle'[`itemdif',3]<0.05{ /*DIF NU détectée*/ matrix dif_rc[`itemdif',2]=0 di di _col(17) in ye " >>> ``itemdif'' : Non-uniform differences of item difficulties between groups at T1" di _col(15) _dup(60) "-" } else{/*DIF U détectée*/ matrix dif_rc[`itemdif',2]=`boucle' di di _col(17) in ye ">>> ``itemdif'' : Uniform differences of item difficulties between groups at T1" di _col(15) _dup(60) "-" } } else { // Différence entre groupes au temps 1 mais slmt 2 moda. donc pas de U ou NU di _col(15) _dup(60) "-" } } local ++boucle } } /* MODELE FINAL DE LA PARTIE 1. Si DIFT1 détecté (=Au moins 2 boucles dans l'étape C)*/ if `nb_stepC' > 1 { forvalues j=1/`nbitems'{ local model "" local listconst "" if dif_rc[`j',1]==. | dif_rc[`j',1]==0 { /*si pas de DIF: contraintes 1-200*/ forvalues p=1/`nbdif_`j''{ qui local listconst "`listconst' `=0+`maxdif'*(`j'-1)+`p''" qui constraint list `=0+`maxdif'*(`j'-1)+`p'' } } else { if dif_rc[`j',2]!=. & dif_rc[`j',2]!=0 { /*DIF U: contraintes 201-400*/ forvalues p=2/`nbdif_`j''{ qui local listconst "`listconst' `=200+`maxdif'*(`j'-1)+`p''" qui constraint list `=200+`maxdif'*(`j'-1)+`p'' } } } } forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ local model "`model' (`p'.``j''<-THETA@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) var(0: THETA@v) var(1:THETA@v) constraint(`listconst') from(esti_B) /* Stockage des estimations du modèle */ estimates store modeldifCFin matrix val_mC = r(table) /* Calcul des difficultés d'item (delta_j) */ matrix delta_mCFin=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC "`name_partOneC' delta_`p'_gp`g'" } } local name_partOneL "" forvalues j=1/`nbitems' { local name_partOneL "`name_partOneL' ``j''" } matrix colnames delta_mCFin = `name_partOneC' matrix rownames delta_mCFin = `name_partOneL' matrix delta_mCFin_se=J(`nbitems',`=`nbdif_max'*2',.) local name_partOneC_se "" forvalues p=1/`nbdif_max' { forvalues g=0/1 { local name_partOneC_se "`name_partOneC_se' delta_`p'_gp`g'_se" } } matrix colnames delta_mCFin_se = `name_partOneC_se' matrix rownames delta_mCFin_se = `name_partOneL' forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues g=0/1{ qui lincom -[`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mCFin=r(estimate) local delta`j'_`p'g`g'mCFin_se=r(se) if `p'>1{ qui lincom [`=`p'-1'.``j'']:`g'.`gp' - [`p'.``j'']:`g'.`gp' local delta`j'_`p'g`g'mCFin = r(estimate) local delta`j'_`p'g`g'mCFin_se = r(se) } matrix delta_mCFin[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mCFin' matrix delta_mCFin_se[`j',`=2*`p'-1+`g'']=`delta`j'_`p'g`g'mCFin_se' } } } if "`group'" != "" { //Variance et se mA matrix var_mC = (val_mC[1,"/var(THETA)#0bn.`gp'"]\val_mC[2,"/var(THETA)#0bn.`gp'"]) } /*group effect*/ qui lincom [/]:mean(THETA)#1.`gp'-[/]:mean(THETA)#0bn.`gp' local geffmCFin=r(estimate) local segeffmCFin=r(se) qui test [/]:mean(THETA)#1.`gp'-[/]:mean(THETA)#0bn.`gp'=0 local gcmCFinp=r(p) local gcmCFinchi=r(chi2) local gcmCFindf=r(df) } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////// PARTIE 2 : RECALIBRATION ? //////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// di di _dup(59) "_ " di if "`group'" != "" { di in ye "PART 2 : DETECTION OF DIFFERENCE IN ITEM DIFFICULTIES ACROSS TIMES (RECALIBRATION)" } else { di in ye "DETECTION OF DIFFERENCE IN ITEM DIFFICULTIES ACROSS TIMES (RECALIBRATION)" } ********************************* ** MODEL 2 ** ********************************* local listconst "" forvalues j=1/`nbitems'{ /*contraintes pour les autres items (si DIF NU sur item k, pas de contraintes)*/ if dif_rc[`j',1]==. | dif_rc[`j',1]==0 {/*pas de DIF à T1 sur item k: contraintes 1*/ forvalues p=1/`nbdif_`j''{ local listconst "`listconst' `=0+`maxdif'*(`j'-1)+`p''" qui constraint list `=0+`maxdif'*(`j'-1)+`p'' } } else{ if dif_rc[`j',2]!=. & dif_rc[`j',2] != 0 { /*diff T1 U: contraintes 200*/ forvalues p=2/`nbdif_`j''{ local listconst "`listconst' `=200+`maxdif'*(`j'-1)+`p''" qui constraint list `=200+`maxdif'*(`j'-1)+`p'' } } } forvalues p=1/`nbdif_`j''{ /* egalites entre temps : groupe 0 (401-600)*/ local listconst "`listconst' `=400+`maxdif'*(`j'-1)+`p''" qui constraint list `=400+`maxdif'*(`j'-1)+`p'' } forvalues p=1/`nbdif_`j''{ /* egalites entre temps : groupe 1 (601-800)*/ local listconst "`listconst' `=600+`maxdif'*(`j'-1)+`p''" qui constraint list `=600+`maxdif'*(`j'-1)+`p'' } } local model "" forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ local model "`model' (`p'.``j''<-THETA1@`p')(`p'.``=`j'+`nbitems'''<-THETA2@`p')" } } if "`group'" != "" { qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) means(0: THETA1@0 THETA2@m20) means(1: THETA1@m11 THETA2@m21) var(0: THETA1@v1 THETA2@v2) var(1:THETA1@v1 THETA2@v2) cov(0: THETA1*THETA2@cov12) cov(1: THETA1*THETA2@cov12) constraint(`listconst') } else { qui gsem `model', mlogit tol(0.01) iterate(100) means(THETA1@0 THETA2@m20) var(THETA1@v1 THETA2@v2) cov(THETA1*THETA2@cov12) constraint(`listconst') } /*Stockage des données du modèle 2 */ estimates store model2 matrix val_m2 = r(table) matrix esti_2 = e(b) if "`group'" != "" { matrix var_m2 = (val_m2[1,"/var(THETA1)#0bn.`gp'"],val_m2[1,"/var(THETA2)#0bn.`gp'"]\val_m2[2,"/var(THETA1)#0bn.`gp'"],val_m2[2,"/var(THETA2)#0bn.`gp'"]) matrix covar_m2 = (val_m2[1,"/cov(THETA1,THETA2)#0.`gp'"],val_m2[1,"/cov(THETA1,THETA2)#1.`gp'"]\val_m2[2,"/cov(THETA1,THETA2)#0.`gp'"],val_m2[2,"/cov(THETA1,THETA2)#1.`gp'"]\val_m2[4,"/cov(THETA1,THETA2)#0.`gp'"],val_m2[4,"/cov(THETA1,THETA2)#1.`gp'"]) } else { matrix var_m2 = (val_m2[1,"/var(THETA1)"],val_m2[1,"/var(THETA2)"]\val_m2[2,"/var(THETA1)"],val_m2[2,"/var(THETA2)"]) matrix covar_m2 = (val_m2[1,"/cov(THETA1,THETA2)"]\val_m2[2,"/cov(THETA1,THETA2)"]\val_m2[4,"/cov(THETA1,THETA2)"]) } /*group effect*/ if "`group'" != "" { qui lincom [/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp' local geffm2=r(estimate) local segeffm2=r(se) local ubgeffm2 = r(ub) local lbgeffm2 = r(lb) qui test [/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp'=0 local gpm2p=r(p) local gpm2chi=r(chi2) local gpm2df=r(df) } /*time effect*/ if "`group'" != "" { qui lincom [/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#0bn.`gp' local teffm2=r(estimate) local seteffm2=r(se) local ubteffm2 = r(ub) local lbteffm2 = r(lb) qui test [/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#0bn.`gp'=0 local tm2p=r(p) local tm2chi=r(chi2) local tm2df=r(df) } else { qui lincom [/]:mean(THETA2) /* [/]:mean(THETA1)*/ local teffm2=r(estimate) local seteffm2=r(se) local ubteffm2 = r(ub) local lbteffm2 = r(lb) qui test [/]:mean(THETA2) = 0 /* [/]:mean(THETA1)*/ local tm2p=r(p) local tm2chi=r(chi2) local tm2df=r(df) } *INTERACTION if "`group'" != "" { qui lincom [/]:mean(THETA2)#1.`gp'-[/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#1.`gp'+[/]:mean(THETA1)#0bn.`gp' local interm2=r(estimate) local seinterm2=r(se) local ubinterm2 = r(ub) local lbinterm2 = r(lb) qui test [/]:mean(THETA2)#1.`gp'-[/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#1.`gp'+[/]:mean(THETA1)#0bn.`gp' = 0 local interm2p=r(p) local interm2chi=r(chi2) local interm2df=r(df) } if "`group'" != "" { matrix mod2 = J(7,`=`nbmoda_sum'*4+6',.) local name_partTwoC "" forvalues j = 1/`nbitems' { forvalues p=1/`nbdif_`j'' { forvalues t=1/2 { forvalues g = 0/1 { local name_partTwoC "`name_partTwoC' d_j`j'_p`p'_gp`g'_t`t'" } } } } local name_partTwoC "`name_partTwoC' VAR(THETA1) VAR(THETA2) COV(TH1,TH2) GROUP_Effect TIME_Effect INTER_TxG " matrix colnames mod2 = `name_partTwoC' matrix rownames mod2 = Estimate se Upper_b Lower_b Chi_square DF pvalue } else { matrix mod2 = J(7,`=`nbmoda_sum'*2+4',.) local name_partTwoC "" forvalues j = 1/`nbitems' { forvalues p=1/`nbdif_`j'' { forvalues t=1/2 { local name_partTwoC "`name_partTwoC' d_j`j'_p`p'_t`t'" } } } local name_partTwoC "`name_partTwoC' VAR(THETA1) VAR(THETA2) COV(TH1,TH2) TIME_Effect " matrix colnames mod2 = `name_partTwoC' matrix rownames mod2 = Estimate se Upper_b Lower_b Chi_square DF pvalue } *Difficultés forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues t=1/2{ if "`group'" != "" { // groupe binaire forvalues g=0/1 { qui lincom -[`p'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' local delta`t'_`j'_`p'g`g'm2= r(estimate) local delta`t'_`j'_`p'g`g'm2_se= r(se) local delta`t'_`j'_`p'g`g'm2_ub=r(ub) local delta`t'_`j'_`p'g`g'm2_lb=r(lb) local delta`t'_`j'_`p'g`g'm2_p=r(p) if `p'>1 { qui lincom [`=`p'-1'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' - [`p'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' local delta`t'_`j'_`p'g`g'm2=r(estimate) local delta`t'_`j'_`p'g`g'm2_se=r(se) local delta`t'_`j'_`p'g`g'm2_ub=r(ub) local delta`t'_`j'_`p'g`g'm2_lb=r(lb) local delta`t'_`j'_`p'g`g'm2_p=r(p) } local place = 0 local compt = 1 while `compt' < `j' { local place = `place' + `nbdif_`compt'' local ++compt } if `t' == 1 { matrix mod2[1,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm2' matrix mod2[2,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm2_se' matrix mod2[3,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm2_ub' matrix mod2[4,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm2_lb' matrix mod2[7,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm2_p' } if `t' == 2 { matrix mod2[1,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm2' matrix mod2[2,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm2_se' matrix mod2[3,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm2_ub' matrix mod2[4,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm2_lb' matrix mod2[7,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm2_p' } } } else { // groupe unique (=gp0) qui lincom -[`p'.``=(`t'-1)*`nbitems'+`j''']_cons local delta`t'_`j'_`p'g0m2= r(estimate) local delta`t'_`j'_`p'g0m2_se= r(se) local delta`t'_`j'_`p'g0m2_ub=r(ub) local delta`t'_`j'_`p'g0m2_lb=r(lb) local delta`t'_`j'_`p'g0m2_p=r(p) if `p'>1{ qui lincom [`=`p'-1'.``=(`t'-1)*`nbitems'+`j''']_cons - [`p'.``=(`t'-1)*`nbitems'+`j''']_cons local delta`t'_`j'_`p'g0m2=r(estimate) local delta`t'_`j'_`p'g0m2_se=r(se) local delta`t'_`j'_`p'g0m2_ub=r(ub) local delta`t'_`j'_`p'g0m2_lb=r(lb) local delta`t'_`j'_`p'g0m2_p=r(p) } local place = 0 local compt = 1 while `compt' < `j' { local place = `place' + `nbdif_`compt'' local ++compt } if `t' == 1 { matrix mod2[1,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2' matrix mod2[2,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2_se' matrix mod2[3,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2_ub' matrix mod2[4,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2_lb' matrix mod2[7,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2_p' } if `t' == 2 { matrix mod2[1,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2' matrix mod2[2,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2_se' matrix mod2[3,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2_ub' matrix mod2[4,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2_lb' matrix mod2[7,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m2_p' } } } } } if "`group'" != "" { matrix mod2[1,`=4*`nbmoda_sum'+1'] = (val_m2[1,"/var(THETA1)#0bn.`gp'"], val_m2[1,"/var(THETA2)#0bn.`gp'"]) matrix mod2[2,`=4*`nbmoda_sum'+1'] = (val_m2[2,"/var(THETA1)#0bn.`gp'"],val_m2[2,"/var(THETA2)#0bn.`gp'"]) matrix mod2[3,`=4*`nbmoda_sum'+1'] = (val_m2[6,"/var(THETA1)#0bn.`gp'"],val_m2[6,"/var(THETA2)#0bn.`gp'"]) matrix mod2[4,`=4*`nbmoda_sum'+1'] = (val_m2[5,"/var(THETA1)#0bn.`gp'"],val_m2[5,"/var(THETA2)#0bn.`gp'"]) matrix mod2[1,`=4*`nbmoda_sum'+2+1'] = (val_m2[1,"/cov(THETA1,THETA2)#0.`gp'"]) matrix mod2[2,`=4*`nbmoda_sum'+2+1'] = (val_m2[2,"/cov(THETA1,THETA2)#0.`gp'"]) matrix mod2[3,`=4*`nbmoda_sum'+2+1'] = (val_m2[6,"/cov(THETA1,THETA2)#0.`gp'"]) matrix mod2[4,`=4*`nbmoda_sum'+2+1'] = (val_m2[5,"/cov(THETA1,THETA2)#0.`gp'"]) matrix mod2[1,`=4*`nbmoda_sum'+2+1+1'] = `geffm2' matrix mod2[2,`=4*`nbmoda_sum'+2+1+1'] = `segeffm2' matrix mod2[3,`=4*`nbmoda_sum'+2+1+1'] = `ubgeffm2' matrix mod2[4,`=4*`nbmoda_sum'+2+1+1'] = `lbgeffm2' matrix mod2[5,`=4*`nbmoda_sum'+2+1+1'] = `gpm2chi' matrix mod2[6,`=4*`nbmoda_sum'+2+1+1'] = `gpm2df' matrix mod2[7,`=4*`nbmoda_sum'+2+1+1'] = `gpm2p' matrix mod2[1,`=4*`nbmoda_sum'+2+1+1+1'] = `teffm2' matrix mod2[2,`=4*`nbmoda_sum'+2+1+1+1'] = `seteffm2' matrix mod2[3,`=4*`nbmoda_sum'+2+1+1+1'] = `ubteffm2' matrix mod2[4,`=4*`nbmoda_sum'+2+1+1+1'] = `lbteffm2' matrix mod2[5,`=4*`nbmoda_sum'+2+1+1+1'] = `tm2chi' matrix mod2[6,`=4*`nbmoda_sum'+2+1+1+1'] = `tm2df' matrix mod2[7,`=4*`nbmoda_sum'+2+1+1+1'] = `tm2p' matrix mod2[1,`=4*`nbmoda_sum'+2+1+1+1+1'] = `interm2' matrix mod2[2,`=4*`nbmoda_sum'+2+1+1+1+1'] = `seinterm2' matrix mod2[3,`=4*`nbmoda_sum'+2+1+1+1+1'] = `ubinterm2' matrix mod2[4,`=4*`nbmoda_sum'+2+1+1+1+1'] = `lbinterm2' matrix mod2[5,`=4*`nbmoda_sum'+2+1+1+1+1'] = `interm2chi' matrix mod2[6,`=4*`nbmoda_sum'+2+1+1+1+1'] = `interm2df' matrix mod2[7,`=4*`nbmoda_sum'+2+1+1+1+1'] = `interm2p' } else { matrix mod2[1,`=2*`nbmoda_sum'+1'] = (val_m2[1,"/var(THETA1)"],val_m2[1,"/var(THETA2)"]) matrix mod2[2,`=2*`nbmoda_sum'+1'] = (val_m2[2,"/var(THETA1)"],val_m2[2,"/var(THETA2)"]) matrix mod2[3,`=2*`nbmoda_sum'+1'] = (val_m2[6,"/var(THETA1)"],val_m2[6,"/var(THETA2)"]) matrix mod2[4,`=2*`nbmoda_sum'+1'] = (val_m2[5,"/var(THETA1)"],val_m2[5,"/var(THETA2)"]) matrix mod2[1,`=2*`nbmoda_sum'+2+1'] = (val_m2[1,"/cov(THETA1,THETA2)"]) matrix mod2[2,`=2*`nbmoda_sum'+2+1'] = (val_m2[2,"/cov(THETA1,THETA2)"]) matrix mod2[3,`=2*`nbmoda_sum'+2+1'] = (val_m2[6,"/cov(THETA1,THETA2)"]) matrix mod2[4,`=2*`nbmoda_sum'+2+1'] = (val_m2[5,"/cov(THETA1,THETA2)"]) matrix mod2[1,`=2*`nbmoda_sum'+2+1+1'] = `teffm2' matrix mod2[2,`=2*`nbmoda_sum'+2+1+1'] = `seteffm2' matrix mod2[3,`=2*`nbmoda_sum'+2+1+1'] = `ubteffm2' matrix mod2[4,`=2*`nbmoda_sum'+2+1+1'] = `lbteffm2' matrix mod2[5,`=2*`nbmoda_sum'+2+1+1'] = `tm2chi' matrix mod2[6,`=2*`nbmoda_sum'+2+1+1'] = `tm2df' matrix mod2[7,`=2*`nbmoda_sum'+2+1+1'] = `tm2p' } ********************************* ** MODEL 1 ** ********************************* /*PCM longitudinal, no true change, group effect, interaction*/ local listconst "" forvalues j=1/`nbitems'{ /*contraintes pour les autres items (si DIF NU sur item k, pas de contraintes*/ if dif_rc[`j',1]==. | dif_rc[`j',1]==0 {/*pas de DIF sur item k: contraintes 1*/ forvalues p=1/`nbdif_`j''{ local listconst "`listconst' `=0+`maxdif'*(`j'-1)+`p''" qui constraint list `=0+`maxdif'*(`j'-1)+`p'' } } else{ if `nbdif_`j'' > 1 { if dif_rc[`j',2]!=. & dif_rc[`j',2] != 0 { /*diff T1 U: contraintes 201*/ forvalues p=2/`nbdif_`j''{ local listconst "`listconst' `=200+`maxdif'*(`j'-1)+`p''" qui constraint list `=200+`maxdif'*(`j'-1)+`p'' } } } } } local model "" forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ local model "`model' (`p'.``j''<-THETA1@`p')(`p'.``=`j'+`nbitems'''<-THETA2@`p')" } } if "`group'"!="" { qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) means(0: THETA1@0 THETA2@0) means(1: THETA1@m1 THETA2@m1) var(0: THETA1@v1 THETA2@v2) var(1:THETA1@v1 THETA2@v2) cov(0: THETA1*THETA2@cov12) cov(1: THETA1*THETA2@cov12) constraint(`listconst') from(esti_2, skip) } else { qui gsem `model', mlogit tol(0.01) iterate(100) means(THETA1@0 THETA2@0) var(THETA1@v1 THETA2@v2) cov(THETA1*THETA2@cov12) from(esti_2, skip) } /* Stockage des estimations du modèle 1 */ estimates store model1 matrix val_m1 = r(table) /* Calcul des difficultés d'item (delta_j) */ matrix delta_m1 = J(`nbitems',`=`nbdif_max'*4',.) local name_partTwoC "" forvalues p=1/`nbdif_max' { forvalues t=1/2 { forvalues g = 0/1 { local name_partTwoC "`name_partTwoC' delta_t`t'_`p'_gp`g'" } } } local name_partTwoL "" forvalues j=1/`=`nbitems'*2' { if `j' <= `nbitems' { local name_partTwoL "`name_partTwoL' ``j''" } else { local name_partTwoL "`name_partTwoL' ``=`nbitems'+`j'''" } } matrix colnames delta_m1 = `name_partTwoC' matrix rownames delta_m1 = `name_partTwoL' matrix delta_m1_se = J(`nbitems',`=`nbdif_max'*4',.) local name_partTwoC_se "" forvalues p=1/`nbdif_max' { forvalues t=1/2 { forvalues g = 0/1 { local name_partTwoC_se "`name_partTwoC_se' delta_t`t'_`p'_gp`g'_se" } } } matrix colnames delta_m1_se = `name_partTwoC_se' matrix rownames delta_m1_se = `name_partTwoL' if "`group'"!="" { forvalues t=1/2{ forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues g=0/1{ qui lincom -[`p'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' local delta`t'_`j'_`p'g`g'm1= r(estimate) local delta`t'_`j'_`p'g`g'm1_se= r(se) if `p'>1{ qui lincom [`=`p'-1'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' - [`p'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' local delta`t'_`j'_`p'g`g'm1=r(estimate) local delta`t'_`j'_`p'g`g'm1_se=r(se) } if `t' == 1 { matrix delta_m1[`j',`=4*(`p'-1)+`g'+`t'']=`delta`t'_`j'_`p'g`g'm1' matrix delta_m1_se[`j',`=4*(`p'-1)+`g'+`t'']=`delta`t'_`j'_`p'g`g'm1_se' } if `t' == 2 { matrix delta_m1[`j',`=4*(`p'-1)+1+`g'+`t'']=`delta`t'_`j'_`p'g`g'm1' matrix delta_m1_se[`j',`=4*(`p'-1)+1+`g'+`t'']=`delta`t'_`j'_`p'g`g'm1_se' } } } } } } else { forvalues t=1/2 { forvalues j=1/`nbitems' { forvalues p = 1/`nbdif_`j'' { qui lincom -[`p'.``=(`t'-1)*`nbitems'+`j''']:_cons local delta`t'_`j'_`p'g0m1= r(estimate) local delta`t'_`j'_`p'g0m1_se= r(se) if `p'>1{ qui lincom [`=`p'-1'.``=(`t'-1)*`nbitems'+`j''']:_cons - [`p'.``=(`t'-1)*`nbitems'+`j''']:_cons local delta`t'_`j'_`p'g0m1=r(estimate) local delta`t'_`j'_`p'g0m1_se=r(se) } if `t' == 1 { matrix delta_m1[`j',`=4*(`p'-1)+`t'']=`delta`t'_`j'_`p'g0m1' matrix delta_m1_se[`j',`=4*(`p'-1)+`t'']=`delta`t'_`j'_`p'g0m1_se' } if `t' == 2 { matrix delta_m1[`j',`=4*(`p'-1)+1+`t'']=`delta`t'_`j'_`p'g0m1' matrix delta_m1_se[`j',`=4*(`p'-1)+1+`t'']=`delta`t'_`j'_`p'g0m1_se' } } } } } if "`group'" != "" { matrix var_m1 = (val_m1[1,"/var(THETA1)#0bn.`gp'"],val_m1[1,"/var(THETA2)#0bn.`gp'"]\val_m1[2,"/var(THETA1)#0bn.`gp'"],val_m1[2,"/var(THETA2)#0bn.`gp'"]) matrix covar_m1 = (val_m1[1,"/cov(THETA1,THETA2)#0.`gp'"],val_m1[1,"/cov(THETA1,THETA2)#1.`gp'"]\val_m1[2,"/cov(THETA1,THETA2)#0.`gp'"],val_m1[2,"/cov(THETA1,THETA2)#1.`gp'"]\val_m1[4,"/cov(THETA1,THETA2)#0.`gp'"],val_m1[4,"/cov(THETA1,THETA2)#1.`gp'"]) } else { matrix var_m1 = (val_m1[1,"/var(THETA1)"],val_m1[1,"/var(THETA2)"]\val_m1[2,"/var(THETA1)"],val_m1[2,"/var(THETA2)"]) matrix covar_m1 = (val_m1[1,"/cov(THETA1,THETA2)"]\val_m1[2,"/cov(THETA1,THETA2)"]\val_m1[4,"/cov(THETA1,THETA2)"]) } /*group effect*/ if "`group'"!="" { qui lincom [/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp' local geffm1=r(estimate) local segeffm1=r(se) qui test [/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp' = 0 local gpm1p=r(p) local gpm1chi=r(chi2) local gpm1df=r(df) } ************************************************************* ***********************AFFICHAGE***************************** ************************************************************* // Affichage du modèle 1 di di in ye "PROCESSING STEP 1" di /* Affichage des estimations des difficultés */ if "`group'" != "" { di _col(5) in ye "{ul:MODEL 1:} Group effect estimated, no time effect (mean of latent trait of group 0 at T2) equal to mean of group 0 at T1)," di _col(7) in ye "all item difficulties are freely estimated across times" di di _col(10) in ye "Item difficulties estimates (s.e.)" di _col(10) "{hline 85}" di _col(30) "Time 1" _col(70) "Time 2" di in ye _col(20) abbrev("`gp'",15) "=0" _col(38) abbrev("`gp'",15) "=1" _col(58) abbrev("`gp'",15) "=0" _col(76) abbrev("`gp'",15) "=1" di _col(10) "{hline 85}" } else { di _col(5) in ye "{ul:MODEL 1}: no time effect," di _col(7) in ye "all item difficulties are freely estimated across times" di di _col(10) in ye "Item difficulties estimates (s.e.)" di _col(10) "{hline 50}" di _col(30) "Time 1" _col(45) "Time 2" di _col(10) "{hline 50}" } forvalues j=1/`nbitems' { di in ye _col(10) "``j''" forvalues p=1/`nbdif_`j'' { if "`group'" != "" { di in gr _col(10) "`p'" _col(20) %6.2f `delta1_`j'_`p'g0m1' " (" %4.2f `delta1_`j'_`p'g0m1_se' ")" _col(38) %6.2f `delta1_`j'_`p'g1m1' " (" %4.2f `delta1_`j'_`p'g1m1_se' ")" /// _col(58) %6.2f `delta2_`j'_`p'g0m1' " (" %4.2f `delta2_`j'_`p'g0m1_se' ")" _col(76) %6.2f `delta2_`j'_`p'g1m1' " (" %4.2f `delta2_`j'_`p'g1m1_se' ")" } else { di in gr _col(10) "`p'" _col(25) %6.2f `delta1_`j'_`p'g0m1' " (" %4.2f `delta1_`j'_`p'g0m1_se' ")" _col(42) %6.2f `delta2_`j'_`p'g0m1' " (" %4.2f `delta2_`j'_`p'g0m1_se' ")" } } } if "`group'" != "" { di _col(10) "{hline 85}" } else { di _col(10) "{hline 50}" } /* Affichage des estimations du trait latent du modèle 1 */ di di _col(10) in ye "Latent trait distribution estimates" if "`group'" != "" { di _col(10) "{hline 80}" di _col(45) in ye "Estimate" _col(60) "Standard error" _col(77) "P-value" di _col(10) "{hline 80}" } else { di _col(10) "{hline 70}" di _col(45) in ye "Estimate" _col(60) "Standard error" " di _col(10) "{hline 70}" } di _col(10) in ye "Variance Time 1" in gr _col(44) %6.2f `=var_m1[1,1]' _col(62) %6.2f `=var_m1[2,1]' di _col(10) in ye "Variance Time 2" in gr _col(44) %6.2f `=var_m1[1,2]' _col(62) %6.2f `=var_m1[2,2]' di _col(10) in ye "Covariance" in gr _col(44) %6.2f `=covar_m1[1,1]' _col(62) %6.2f `=covar_m1[2,1]' if "`group'" != "" { di _col(10) in ye "Group effect (mean gp 1 at T1)" in gr _col(44) %6.2f `geffm1' _col(62) %6.2f `segeffm1' _col(77) %6.4f `gpm1p' } di _col(10) in ye "Time effect (mean gp 0 at T2)" in gr _col(44) "0 (constrained)" if "`group'" != "" { di _col(10) in ye "TimexGroup inter" in gr _col(44) "0 (constrained)" } if "`group'" != "" { di _col(10) "{hline 80}" } else { di _col(10) "{hline 70}" } //Affichage du modèle 2 di di in ye "PROCESSING STEP 2" di /* Affichage des estimations des difficultés */ if "`group'" != "" { di _col(5) in ye "{ul:MODEL 2:} Group effect, time effect (mean of latent trait of group 0 at T2) free estimated, time x group interaction estimated," di _col(7) in ye "Same item difficulties estimated across times" di di _col(10) in ye "Item difficulties estimates (s.e.)" di _col(10) "{hline 85}" di _col(30) "Time 1" _col(70) "Time 2" di in ye _col(20) abbrev("`gp'",15) "=0" _col(38) abbrev("`gp'",15) "=1" _col(58) abbrev("`gp'",15) "=0" _col(76) abbrev("`gp'",15) "=1" di _col(10) "{hline 85}" } else { di _col(5) in ye "{ul:MODEL 2}: time effect estimated (mean of latent trait group 0 at T2) free estimated," di _col(7) in ye "Same item difficulties estimated across times" di di _col(10) in ye "Item difficulties estimates (s.e.)" di _col(10) "{hline 50}" di _col(30) "Time 1" _col(45) "Time 2" di _col(10) "{hline 50}" } forvalues j=1/`nbitems' { di in ye _col(10) "``j''" forvalues p=1/`nbdif_`j'' { if "`group'" != "" { di in gr _col(10) "`p'" _col(20) %6.2f `delta1_`j'_`p'g0m2' " (" %4.2f `delta1_`j'_`p'g0m2_se' ")" _col(38) %6.2f `delta1_`j'_`p'g1m2' " (" %4.2f `delta1_`j'_`p'g1m2_se' ")" /// _col(58) %6.2f `delta2_`j'_`p'g0m2' " (" %4.2f `delta2_`j'_`p'g0m2_se' ")" _col(76) %6.2f `delta2_`j'_`p'g1m2' " (" %4.2f `delta2_`j'_`p'g1m2_se' ")" } else { di in gr _col(10) "`p'" _col(25) %6.2f `delta1_`j'_`p'g0m2' " (" %4.2f `delta1_`j'_`p'g0m2_se' ")" _col(42) %6.2f `delta2_`j'_`p'g0m2' " (" %4.2f `delta2_`j'_`p'g0m2_se' ")" } } } if "`group'" != "" { di _col(10) "{hline 85}" } else { di _col(10) "{hline 50}" } /* Affichage des estimations du trait latent du modèle 2 */ di di _col(10) in ye "Latent trait distribution estimates" di _col(10) "{hline 80}" di _col(45) in ye "Estimate" _col(60) "Standard error" _col(77) "P-value" di _col(10) "{hline 80}" if "`group'" == "" { local fact_k = 2 } else { local fact_k = 4 } di _col(10) in ye "Variance Time 1" in gr _col(44) %6.2f `=mod2[1,`=`fact_k'*`nbmoda_sum'+1']' _col(62) %6.2f =mod2[2,`=`fact_k'*`nbmoda_sum'+1'] di _col(10) in ye "Variance Time 2" in gr _col(44) %6.2f `=mod2[1,`=`fact_k'*`nbmoda_sum'+2']' _col(62) %6.2f `=mod2[2,`=`fact_k'*`nbmoda_sum'+2']' di _col(10) in ye "Covariance" in gr _col(44) %6.2f `=mod2[1,`=`fact_k'*`nbmoda_sum'+3']' _col(62) %6.2f `=mod2[2,`=`fact_k'*`nbmoda_sum'+3']' if "`group'" != "" { di _col(10) in ye "Group effect (mean gp 1 at T1)" in gr _col(44) %6.2f `geffm2' _col(62) %6.2f `segeffm2' _col(77) %6.4f `gpm2p' } di _col(10) in ye "Time effect (mean gp 0 at T2)" in gr _col(44) %6.2f `teffm2' _col(62) %6.2f `seteffm2' _col(77) %6.4f `tm2p' if "`group'" != "" { di _col(10) in ye "TimexGroup inter" in gr _col(44) %6.2f `interm2' _col(62) %6.2f `seinterm2' _col(77) %6.4f `interm2p' } di _col(10) "{hline 80}" di ***************************************************** * Modèle 1 vs Modèle 2 * ***************************************************** qui lrtest model2 model1 local rstestp=r(p) local rstestchi=r(chi2) local rstestdf=r(df) di _col(10) in ye "LIKELIHOOD-RATIO TEST MODEL 1 VS MODEL 2" di _col(10) "{hline 50}" di _col(10) in ye "Chi-square" _col(30) "DF" _col(50) "P-value" di _col(10) in gr %6.2f `rstestchi' _col(30) %2.0f `rstestdf' _col(50) %6.4f `rstestp' di _col(10) "{hline 50}" if `rstestp'<0.05{ di _col(10) in ye "DIFFERENCE IN ITEM DIFFICULTIES ACROSS TIMES LIKELY" } else{ di _col(10) in ye "NO DIFFERENCE IN ITEM DIFFICULTIES ACROSS TIMES DETECTED, NO RECALIBRATION DETECTED" } ********************************* *************MODEL 3************* ********************************* // Etape itérative si lrtest significatif local nb_step3=0 if `rstestp' < 0.05 { /* If pvalue(LRtest)<0.05 then step 3 */ di di in ye "PROCESSING STEP 3" di /*test RC pour chaque item*/ local boucle = 1 local stop = 0 //matrix list dif_rc while `boucle' <= `=`nbitp'-1' & `stop' == 0 { /*on s'arrête quand on a libéré du RC sur (tous les items-1) ou lorsqu'il n'y a plus de tests significatifs*/ local nb_step3 = `boucle' local pajust=0.05/`=`nbitp'+1-`boucle'' // local pajust=0.05/`=`nbitems'+1-`boucle' if "`group'" != "" { local pajust2 = 0.05/`nbgrp' } /*réinitialisation de la matrice de test*/ matrix test_rc_`boucle'=J(`nbitems',9,.) matrix test_rcCOMM_`boucle'=J(`nbitems',3,.) matrix test_rcU_`boucle'=J(`nbitems',6,.) matrix colnames test_rc_`boucle'= chi_RC df_RC pvalue_RC chi_RCg0 df_RCg0 pvalue_RCg0 chi_RCg1 df_RCg1 pvalue_RCg1 matrix colnames test_rcCOMM_`boucle'= chi_RCCOMM df_RCCOMM pvalue_RCCOMM matrix colnames test_rcU_`boucle'= chi_RCUg0 df_RCUg0 pvalue_RCUg0 chi_RCUg1 df_RCUg1 pvalue_RCUg1 local nbsig=0 local minpval=1 local itemrc=0 di _col(10) "{hline 70}" di _col(10) in ye "Loop `boucle'" _col(50) "Adjusted alpha : " %6.4f `pajust' di di in ye _col(40) "Chi-Square" _col(55) "DF" _col(60) "P-Value" /*boucle de test*/ forvalues j=1/`nbitems'{ if `nbdif_`j'' >= 1 { local model "" local listconst "" if dif_rc[`j',3]==. { /*si pas de RC déjà détecté sur l'item j -> test item j*/ /*on libère la RC de l'item j: pas de contraintes*/ forvalues k=1/`nbitems'{ /* Contraintes de DIF */ if dif_rc[`k',1]==.|dif_rc[`k',1]==0 { // contraintes si pas de DIF (1-200) forvalues p=1/`nbdif_`k''{ local listconst "`listconst' `=0+`maxdif'*(`k'-1)+`p''" qui constraint list `=0+`maxdif'*(`k'-1)+`p'' } } else { // Présence de DIF if dif_rc[`k',2]!=. & dif_rc[`k',2]!=0 { // contraintes de DIF U (201-400) if `nbmoda_`k'' > 2 { forvalues p=2/`nbdif_`k''{ local listconst "`listconst' `=200+`maxdif'*(`k'-1)+`p''" qui constraint list `=200+`maxdif'*(`k'-1)+`p'' } } } } if `k'!=`j'{ /*contraintes pour les autres items */ if dif_rc[`k',3]==. | dif_rc[`k',3]==0 {/*pas de RC sur item k: contraintes 401-600 601-800*/ forvalues p=1/`nbdif_`k''{ local listconst "`listconst' `=400+`maxdif'*(`k'-1)+`p'' `=600+`maxdif'*(`k'-1)+`p''" qui constraint list `=400+`maxdif'*(`k'-1)+`p'' `=600+`maxdif'*(`k'-1)+`p'' } } else { //RC détectée sur l'item k if dif_rc[`k',4]==0{ /*RC commune: contraintes 801-1000*/ forvalues p=1/`nbdif_`k''{ /***************************** j=1 ou 2 ?****/ local listconst "`listconst' `=800+`maxdif'*(`k'-1)+`p''" qui constraint list `=800+`maxdif'*(`k'-1)+`p'' } if dif_rc[`k',6]!=. & dif_rc[`k',6]!=0 { // RC commune unif. if `nbmoda_`k'' > 2 { forvalues p=2/`nbdif_`k''{ local listconst "`listconst' `=1000+`maxdif'*(`k'-1)+`p''" qui constraint list `=1000+`maxdif'*(`k'-1)+`p'' } } } } else { // RC diff if dif_rc[`k',5]==. | dif_rc[`k',5]==0 { // RC gp0 (400) forvalues p=1/`nbdif_`k''{ local listconst "`listconst' `=400+`maxdif'*(`k'-1)+`p''" qui constraint list `=400+`maxdif'*(`k'-1)+`p'' } } if dif_rc[`k',6]!=. & dif_rc[`k',6]!=0 { // RCU gp0 (1001-1200) if `nbmoda_`k'' > 2 { forvalues p=2/`nbdif_`k''{ local listconst "`listconst' `=1000+`maxdif'*(`k'-1)+`p''" qui constraint list `=1000+`maxdif'*(`k'-1)+`p'' } } } if dif_rc[`k',7]==. | dif_rc[`k',7]==0 { // RC gp1 (600) forvalues p=1/`nbdif_`k''{ local listconst "`listconst' `=600+`maxdif'*(`k'-1)+`p''" qui constraint list `=600+`maxdif'*(`k'-1)+`p'' } } if dif_rc[`k',8]!=. & dif_rc[`k',8]!=0 { // RCU gp1 (1201-1400) if `nbmoda_`k'' > 2 { forvalues p=2/`nbdif_`k''{ local listconst "`listconst' `=1200+`maxdif'*(`k'-1)+`p''" qui constraint list `=1200+`maxdif'*(`k'-1)+`p'' } } } } } } } qui di "`listconst'" local model "" forvalues jj=1/`nbitems'{ forvalues p=1/`nbdif_`jj''{ local model "`model' (`p'.``jj''<-THETA1@`p')(`p'.``=`jj'+`nbitems'''<-THETA2@`p')" } } if "`group'" == "" { // Sans l'option group qui gsem `model', mlogit tol(0.01) iterate(100) means(THETA1@0 THETA2@m20) var(THETA1@v1 THETA2@v2) cov(THETA1*THETA2@cov12) constraint(`listconst') from(esti_2, skip) /*****************/ /*tests RC item i*/ /*****************/ /* RC ? */ qui test [1.``j'']_cons =[1.``=`j'+`nbitems''']_cons if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui test [`p'.``j'']_cons =[`p'.``=`j'+`nbitems''']_cons, acc } } matrix test_rc_`boucle'[`j',1]=(r(chi2),r(df),r(p)) /* RCU ? */ if `nbmoda_`j'' > 2 { qui test 2*([1.``=`j'+`nbitems''']_cons -[1.``j'']_cons)=[2.``=`j'+`nbitems''']_cons -[2.``j'']_cons forvalues p=3/`nbdif_`j''{ qui test `p'*([1.``=`j'+`nbitems''']_cons -[1.``j'']_cons)=[`p'.``=`j'+`nbitems''']_cons -[`p'.``j'']_cons , acc } matrix test_rcU_`boucle'[`j',1]=(r(chi2), r(df),r(p)) } } else { // Avec l'option group qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) means(0: THETA1@0 THETA2@m20) means(1: THETA1@m11 THETA2@m21) var(0: THETA1@v1 THETA2@v2) var(1:THETA1@v1 THETA2@v2) cov(0: THETA1*THETA2@cov12) cov(1: THETA1*THETA2@cov12) constraint(`listconst') from(esti_2, skip) /*****************/ /*tests RC item i*/ /*****************/ /* RC ? */ qui test [1.``j'']0bn.`gp'=[1.``=`j'+`nbitems''']0bn.`gp' if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui test [`p'.``j'']0bn.`gp'=[`p'.``=`j'+`nbitems''']0bn.`gp', acc } } qui test [1.``j'']1.`gp'=[1.``=`j'+`nbitems''']1.`gp', acc if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui test [`p'.``j'']1.`gp'=[`p'.``=`j'+`nbitems''']1.`gp', acc } } matrix test_rc_`boucle'[`j',1]=(r(chi2),r(df),r(p)) /* RC COMMUNE ? */ qui test [1.``=`j'+`nbitems''']0bn.`gp'-[1.``j'']0bn.`gp'=[1.``=`j'+`nbitems''']1.`gp'-[1.``j'']1.`gp' if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui test [`p'.``=`j'+`nbitems''']0bn.`gp'-[`p'.``j'']0bn.`gp'=[`p'.``=`j'+`nbitems''']1.`gp'-[`p'.``j'']1.`gp', acc } } matrix test_rcCOMM_`boucle'[`j',1]=(r(chi2),r(df),r(p)) /* RC groupe 0 ? */ qui test [1.``j'']0bn.`gp'=[1.``=`j'+`nbitems''']0bn.`gp' if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui test [`p'.``j'']0bn.`gp'=[`p'.``=`j'+`nbitems''']0bn.`gp', acc } } matrix test_rc_`boucle'[`j',4]=(r(chi2),r(df),r(p)) /* RCU grp 0 ? */ if `nbmoda_`j'' > 2 { qui test 2*([1.``=`j'+`nbitems''']0bn.`gp'-[1.``j'']0bn.`gp')=[2.``=`j'+`nbitems''']0bn.`gp'-[2.``j'']0bn.`gp' forvalues p=3/`nbdif_`j''{ qui test `p'*([1.``=`j'+`nbitems''']0bn.`gp'-[1.``j'']0bn.`gp')=[`p'.``=`j'+`nbitems''']0bn.`gp'-[`p'.``j'']0bn.`gp', acc } matrix test_rcU_`boucle'[`j',1]=(r(chi2),r(df),r(p)) } /* RC groupe 1 ? */ qui test [1.``j'']1.`gp'=[1.``=`j'+`nbitems''']1.`gp' if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui test [`p'.``j'']1.`gp'=[`p'.``=`j'+`nbitems''']1.`gp', acc } } matrix test_rc_`boucle'[`j',7]=(r(chi2),r(df),r(p)) /* RCU grp 1 ? */ if `nbmoda_`j'' > 2 { qui test 2*([1.``=`j'+`nbitems''']1.`gp'-[1.``j'']1.`gp')=[2.``=`j'+`nbitems''']1.`gp'-[2.``j'']1.`gp' forvalues p=3/`nbdif_`j''{ qui test `p'*([1.``=`j'+`nbitems''']1.`gp'-[1.``j'']1.`gp')=[`p'.``=`j'+`nbitems''']1.`gp'-[`p'.``j'']1.`gp', acc } matrix test_rcU_`boucle'[`j',4]=(r(chi2),r(df),r(p)) } } /******* Matrice test complète *********/ di in ye _col(10) %-30s abbrev("``j'' :",22) in gr _col(40) %6.3f test_rc_`boucle'[`j',1] _col(55) test_rc_`boucle'[`j',2] _col(60) %6.4f test_rc_`boucle'[`j',3] } } } //matrix list test_rc_`boucle' forvalues j=1/`nbitems'{ if test_rc_`boucle'[`j',3]<`pajust'{/*si RC sur item i*/ if test_rc_`boucle'[`j',3]<`minpval'{ local minpval=test_rc_`boucle'[`j',3] local itemrc=`j' } } } if `itemrc' != 0 { // itemrc = numéro de l'item avec le test le + sig. if "`group'" == "" { // Recalibration si pas d'option groupe local ++nbsig matrix dif_rc[`itemrc',3]=`boucle' matrix dif_rc[`itemrc',5]=`boucle' if `nbmoda_`itemrc'' > 2 { di _col(15) _dup(60) "-" di _col(15) in ye "Recalibration on ``itemrc''" di _col(40) "Chi-square" _col(55) "DF" _col(60) "P-value" di _col(15) in ye "Uniform RC ? " in gr _col(40) %4.2f `=test_rcU_`boucle'[`itemrc',1]' _col(55) `=test_rcU_`boucle'[`itemrc',2]' _col(60) %6.4f `=test_rcU_`boucle'[`itemrc',3]' if test_rcU_`boucle'[`itemrc',3] >= 0.05 { //RC Uniforme sur itemRC matrix dif_rc[`itemrc',6]=`boucle' di di _col(17) in ye ">>> ``itemrc'' : Uniform RC" di _col(15) _dup(60) "-" } else { matrix dif_rc[`itemrc',6]=0 di di _col(17) in ye ">>> ``itemrc'' : Non-uniform RC" di _col(15) _dup(60) "-" } } else { di di _col(17) in ye ">>> ``itemrc'' : Recalibration " di _col(15) _dup(60) "-" } } else { // Option groupe di _col(15) _dup(60) "-" di _col(15) in ye "Recalibration on ``itemrc''" di di _col(40) "Chi-Square" _col(55) "DF" _col(60) "P-value" di _col(15) in ye "Common RC ? " in gr _col(40) %4.2f `=test_rcCOMM_`boucle'[`itemrc',1]' _col(55) `=test_rcCOMM_`boucle'[`itemrc',2]' _col(60) %6.4f `=test_rcCOMM_`boucle'[`itemrc',3]' if test_rcCOMM_`boucle'[`itemrc',3] < 0.05 { //RC différentielle di di _col(15) in ye "RC group 0 ? " in gr _col(40) %4.2f `=test_rc_`boucle'[`itemrc',4]' _col(55) `=test_rc_`boucle'[`itemrc',5]' _col(60) %6.4f `=test_rc_`boucle'[`itemrc',6]' "{it: - with adjusted alpha = `pajust2' }" if test_rc_`boucle'[`itemrc',6] < `pajust2' { //RC gp 0 local ++nbsig matrix dif_rc[`itemrc',3]=`boucle' matrix dif_rc[`itemrc',4]=`boucle' matrix dif_rc[`itemrc',5]=`boucle' if `nbmoda_`itemrc'' > 2 { di _col(15) in ye "Uniform RC on gp 0 ? " in gr _col(40) %4.2f `=test_rcU_`boucle'[`itemrc',1]' _col(55) `=test_rcU_`boucle'[`itemrc',2]' _col(60) %6.4f `=test_rcU_`boucle'[`itemrc',3]' if test_rcU_`boucle'[`itemrc',3] >= 0.05 { // RCU gp 0 matrix dif_rc[`itemrc',6]=`boucle' local phrase_diff = ">>> ``itemrc'' : Uniform differential RC on group 0." } else { matrix dif_rc[`itemrc',6]=0 local phrase_diff = ">>> ``itemrc'' : Non-uniform differential RC on group 0." } } else { local phrase_diff = ">>> ``itemrc'' : Differential RC on group 0." } } di di _col(15) in ye "RC group 1 ? " in gr _col(40) %4.2f `=test_rc_`boucle'[`itemrc',7]' _col(55) `=test_rc_`boucle'[`itemrc',8]' _col(60) %6.4f `=test_rc_`boucle'[`itemrc',9]' "{it: - with adjusted alpha = `pajust2' }" if test_rc_`boucle'[`itemrc',9] < `pajust2' { //RC gp 1 local ++nbsig matrix dif_rc[`itemrc',3]=`boucle' matrix dif_rc[`itemrc',4]=`boucle' matrix dif_rc[`itemrc',7]=`boucle' if `nbmoda_`itemrc'' > 2 { di _col(15) in ye "Uniform RC on gp 1 ? " in gr _col(40) %4.2f `=test_rcU_`boucle'[`itemrc',4]' _col(55) `=test_rcU_`boucle'[`itemrc',5]' _col(60) %6.4f `=test_rcU_`boucle'[`itemrc',6]' if test_rcU_`boucle'[`itemrc',6] >= 0.05 { // RCU gp 1 matrix dif_rc[`itemrc',8]=`boucle' di if dif_rc[`itemrc',5] != `boucle' { //RC slmt sur g1 local phrase_diff = ">>> ``itemrc'' : Differential RC, uniform RC on group 1." } else { if dif_rc[`itemrc',6] == 0 { // + RCNU g0 local phrase_diff = ">>> ``itemrc'' : Differential RC, non-uniform RC on group 0 and uniform RC on group 1." } else { // + RCU G0 local phrase_diff = ">>> ``itemrc'' : Differential RC, uniform RC on group 0 and uniform RC on group 1." } } } else { //RCNU gp 1 matrix dif_rc[`itemrc',8]=0 di if dif_rc[`itemrc',5] != `boucle' { local phrase_diff = ">>> ``itemrc'' : Differential RC, non-uniform RC on group 1." } else { if dif_rc[`itemrc',6] == 0 { // + RCNU g0 local phrase_diff = ">>> ``itemrc'' : Differential RC, non-uniform RC on group 0 and non-uniform RC on group 1." } else { // + RCU G0 local phrase_diff = ">>> ``itemrc'' : Differential RC, uniform RC on group 0 and non-uniform RC on group 1." } } } } else { if dif_rc[`itemrc',5] != `boucle' { local phrase_diff = ">>> ``itemrc'' : Differential RC on group 1." } else { local phrase_diff = ">>> ``itemrc'' : Differential RC on group 0 and differential RC on group 1." } } } di di _col(17) in ye "`phrase_diff'" di _col(15) _dup(60) "-" } else { // RC commune -> MAJ modèle 3 /*******************************************************************************************************************/ if `nbmoda_`itemrc'' == 2 { di di _col(14) in ye ">>> {ul:``itemrc''}: recalibration" di _col(20) in ye "Common " in gr "{it:(Chi-s: " %4.2f `=test_rcCOMM_`boucle'[`itemrc',1]' ", DF: `=test_rcCOMM_`boucle'[`itemrc',2]' p-val. : " %4.2f `=test_rcCOMM_`boucle'[`itemrc',3]' ")}" matrix dif_rc[`itemrc',3]=`boucle' matrix dif_rc[`itemrc',4]=0 matrix dif_rc[`itemrc',5]=`boucle' matrix dif_rc[`itemrc',7]=`boucle' local ++nbsig } else { matrix dif_rc[`itemrc',3]=`boucle' matrix dif_rc[`itemrc',4]=0 matrix dif_rc[`itemrc',5]=`boucle' matrix dif_rc[`itemrc',7]=`boucle' //matrix list dif_rc local model "" local listconst "" forvalues j=1/`nbitems'{ /* Contraintes de DIF */ if dif_rc[`j',1]==.|dif_rc[`j',1]==0 { // contraintes si pas de DIF (1-200) forvalues p=1/`nbdif_`j''{ qui local listconst "`listconst' `=0+`maxdif'*(`j'-1)+`p''" qui constraint list `=0+`maxdif'*(`j'-1)+`p'' } } else { // Présence de DIF if dif_rc[`j',2]!=. & dif_rc[`j',2]!=0 { // contraintes de DIF U (201-400) if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui local listconst "`listconst' `=200+`maxdif'*(`j'-1)+`p''" qui constraint list `=200+`maxdif'*(`j'-1)+`p'' } } } } if `j' != `itemrc'{ /*contraintes pour les autres items */ if dif_rc[`j',3]==. | dif_rc[`j',3]==0 {/*pas de RC sur item p: contraintes 401-600 601-800*/ forvalues p=1/`nbdif_`j''{ qui local listconst "`listconst' `=400+`maxdif'*(`j'-1)+`p'' `=600+`maxdif'*(`j'-1)+`p''" qui constraint list `=400+`maxdif'*(`j'-1)+`p'' `=600+`maxdif'*(`j'-1)+`p'' } } else { //RC détectée sur l'item p if dif_rc[`j',4]==0{ /*RC commune: contraintes 801-1000*/ forvalues p=1/`nbdif_`j''{ qui local listconst "`listconst' `=800+`maxdif'*(`j'-1)+`p''" qui constraint list `=800+`maxdif'*(`j'-1)+`p'' } if dif_rc[`j',6]!=. & dif_rc[`j',6]!=0 { // RC commune unif. if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui local listconst "`listconst' `=1000+`maxdif'*(`j'-1)+`p''" qui constraint list `=1000+`maxdif'*(`j'-1)+`p'' } } } } else if dif_rc[`j',4] != 0 & dif_rc[`j',4]!=0. { // RC diff if dif_rc[`j',5]==. | dif_rc[`j',5]==0 { // RC gp0 (400) forvalues p=1/`nbdif_`j''{ qui local listconst "`listconst' `=400+`maxdif'*(`j'-1)+`p''" qui constraint list `=400+`maxdif'*(`j'-1)+`p'' } } if dif_rc[`j',6]!=. & dif_rc[`j',6]!=0 { // RCU gp0 (1001-1200) if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui local listconst "`listconst' `=1000+`maxdif'*(`j'-1)+`p''" qui constraint list `=1000+`maxdif'*(`j'-1)+`p'' } } } if dif_rc[`j',7]==. | dif_rc[`j',7]==0 { // RC gp1 (600) forvalues p=1/`nbdif_`j''{ qui local listconst "`listconst' `=600+`maxdif'*(`j'-1)+`p''" qui constraint list `=600+`maxdif'*(`j'-1)+`p'' } } if dif_rc[`j',8]!=. & dif_rc[`j',8]!=0 { // RCU gp1 (1201-1400) if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ qui local listconst "`listconst' `=1200+`maxdif'*(`j'-1)+`p''" qui constraint list `=1200+`maxdif'*(`j'-1)+`p'' } } } } } } else { // Contrainte de RC commune pour l'itemrc forvalues p=1/`nbdif_`j''{ qui local listconst "`listconst' `=800+`maxdif'*(`itemrc'-1)+`p''" qui constraint list `=800+`maxdif'*(`itemrc'-1)+`p'' } } } qui di "`listconst'" local model "" forvalues jj=1/`nbitems'{ forvalues p=1/`nbdif_`jj''{ local model "`model' (`p'.``jj''<-THETA1@`p')(`p'.``=`jj'+`nbitems'''<-THETA2@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) means(0: THETA1@0 THETA2@m20) means(1: THETA1@m11 THETA2@m21) var(0: THETA1@v1 THETA2@v2) var(1:THETA1@v1 THETA2@v2) cov(0: THETA1*THETA2@cov12) cov(1: THETA1*THETA2@cov12) constraint(`listconst') from(esti_2, skip) /************************/ /*tests RC item `itemrc'*/ /************************/ matrix commU_`boucle'=J(`nbitems',3,.) //Matrice des tests de RCU slmt si RC commune matrix colnames commU_`boucle'= chi_RCU df_RCU p_RCU /* RCU grp 0 ? */ if `nbmoda_`itemrc'' > 2 { qui test 2*([1.``=`itemrc'+`nbitems''']0bn.`gp'-[1.``itemrc'']0bn.`gp')=[2.``=`itemrc'+`nbitems''']0bn.`gp'-[2.``itemrc'']0bn.`gp' forvalues j=3/`nbdif_`itemrc''{ qui test `j'*([1.``=`itemrc'+`nbitems''']0bn.`gp'-[1.``itemrc'']0bn.`gp')=[`j'.``=`itemrc'+`nbitems''']0bn.`gp'-[`j'.``itemrc'']0bn.`gp', acc } matrix commU_`boucle'[`itemrc',1]=(r(chi2),r(df),r(p)) di _col(15) in ye "Uniform RC ?" in gr _col(40) %4.2f `=commU_`boucle'[`itemrc',1]' _col(55) `=commU_`boucle'[`itemrc',2]' _col(60) %6.4f `=commU_`boucle'[`itemrc',3]' if commU_`boucle'[`itemrc',3] >= 0.05 { // RCU local ++nbsig matrix dif_rc[`itemrc',6]=`boucle' matrix dif_rc[`itemrc',8]=`boucle' di //di _col(14) in ye ">>> {ul:``itemrc''}: recalibration" //di _col(20) in ye "Common " in gr "{it:(Chi-s: " %4.2f `=test_rcCOMM_`boucle'[`itemrc',1]' ", DF: `=test_rcCOMM_`boucle'[`itemrc',2]' p-val. : " %4.2f `=test_rcCOMM_`boucle'[`itemrc',3]' ")}" di _col(17) in ye ">>> ``itemrc'' : Uniform common RC" di _col(15) _dup(60) "-" } else { local ++nbsig matrix dif_rc[`itemrc',6]=0 matrix dif_rc[`itemrc',8]=0 di di _col(17) in ye ">>> ``itemrc'' : Non-uniform common RC" di _col(15) _dup(60) "-" } } } } // fin de RC commune } } else { local stop = 1 } /*******************************************************************************************************************/ // Fin de RC sur item i if `nbsig'==0{ local stop=1 if `boucle' == 1 { di di _col(20) in ye "No significant tests, no recalibration detected" di _col(10) "{hline 70}" di } else { di di _col(20) in ye ">>> No other significant tests" di _col(10) "{hline 70}" di } } local ++boucle } } ********************************* *** BILAN *** ********************************* if "`group'" != "" & "`nodif'" == "" { di di _col(2) "{hline 80}" di in ye _col(18) "Difference in" di in ye _col(2) "Item" _col(18) "groups at T1" _col(36) "Recalibration" _col(54) "RC " abbrev("`gp'",10) " 0" _col(72) "RC " abbrev("`gp'",10) " 1" di _col(2) "{hline 80}" forvalues j=1/`nbitems' { local RC local RCg0 local RCg1 local difft1 if (dif_rc[`j',3] != . & dif_rc[`j',3] != 0 & dif_rc[`j',4] == 0) { local RC "Common" } if (dif_rc[`j',3] != . & dif_rc[`j',3] != 0 & dif_rc[`j',4] != 0) { local RC "Differential" } if `nbmoda_`j'' > 2 { if (dif_rc[`j',6]!=. & dif_rc[`j',6] != 0) { local RCg0 "Uniform" } if (dif_rc[`j',6] == 0) { local RCg0 "Non-uniform" } if (dif_rc[`j',8]!=. & dif_rc[`j',8] != 0) { local RCg1 "Uniform" } if ( dif_rc[`j',8] == 0) { local RCg1 "Non-uniform" } if (dif_rc[`j',1] != . ) { if (dif_rc[`j',2]!=0) { local difft1 "Uniform" } else { local difft1 "Non-uniform" } } } else { if dif_rc[`j',6] != . { local RCg0 " X " } if dif_rc[`j',8] != . { local RCg1 " X " } if dif_rc[`j',1] != . { local difft1 " X " } } di in ye _col(2) abbrev("``j''",15) in gr _col(18) "`difft1'" _col(36) "`RC'" _col(54) "`RCg0'" _col(72) "`RCg1'" } di _col(2) "{hline 80}" } else if "`group'" != "" & "`nodif'" != "" { di di _col(10) "{hline 70}" di in ye _col(10) "Item" _col(26) "Recalibration" _col(46) "RC `gp' 0" _col(62) "RC `gp' 1" di _col(10) "{hline 70}" forvalues j=1/`nbitems' { local RC local RCg0 local RCg1 if (dif_rc[`j',3] != . & dif_rc[`j',3] != 0 & dif_rc[`j',4] == 0) { local RC "Common" } if (dif_rc[`j',3] != . & dif_rc[`j',3] != 0 & dif_rc[`j',4] != 0) { local RC "Differential" } if `nbmoda_`j'' > 2 { if (dif_rc[`j',6]!=. & dif_rc[`j',6] != 0) { local RCg0 "Uniform" } if (dif_rc[`j',6] == 0) { local RCg0 "Non-uniform" } if (dif_rc[`j',8]!=. & dif_rc[`j',8] != 0) { local RCg1 "Uniform" } if ( dif_rc[`j',8] == 0) { local RCg1 "Non-uniform" } } else { if dif_rc[`j',6] != . { local RCg0 " X " } if dif_rc[`j',8] != . { local RCg1 " X " } } di in ye _col(10) "``j''" in gr _col(26) "`RC'" _col(44) "`RCg0'" _col(62) "`RCg1'" } di _col(10) "{hline 70}" } else if "`group'" == "" { di di _col(10) "{hline 40}" di in ye _col(10) "Item" _col(36) "Recalibration" di _col(10) "{hline 40}" forvalues j=1/`nbitems' { local RC if dif_rc[`j',3] != . { if `nbmoda_`j'' > 2 { if (dif_rc[`j',6]!=. & dif_rc[`j',6] != 0) { local RC "Uniform" } if (dif_rc[`j',6] == 0) { local RC "Non-uniform" } } else { local RC " X " } } di in ye _col(10) "``j''" in gr _col(38) "`RC'" } di _col(10) "{hline 40}" } ********************************* ** MODEL 4 ** ********************************* di di in ye "PROCESSING STEP 4" di //matrix list dif_rc, title ("Constraints") local model "" local listconst "" forvalues j=1/`nbitems'{ if dif_rc[`j',1]==.|dif_rc[`j',1]==0 { /*si pas de DIF: contraintes 1-200 */ forvalues p=1/`nbdif_`j''{ local listconst "`listconst' `=0+`maxdif'*(`j'-1)+`p''" qui constraint list `=0+`maxdif'*(`j'-1)+`p'' } } else { // Présence de DIF if dif_rc[`j',2]!=. & dif_rc[`j',2]!=0 { // contraintes de DIF U (201-400) if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ local listconst "`listconst' `=200+`maxdif'*(`j'-1)+`p''" qui constraint list `=200+`maxdif'*(`j'-1)+`p'' } } } } if dif_rc[`j',3]==. | dif_rc[`j',3]==0 {/*pas de RC : contraintes 401-600 601-800*/ forvalues p=1/`nbdif_`j''{ local listconst "`listconst' `=400+`maxdif'*(`j'-1)+`p'' `=600+`maxdif'*(`j'-1)+`p''" qui constraint list `=400+`maxdif'*(`j'-1)+`p'' `=600+`maxdif'*(`j'-1)+`p'' } } else { //RC détectée sur l'item j if dif_rc[`j',4]==0{ /*RC commune: contraintes 801-1000*/ forvalues p=1/`nbdif_`j''{ local listconst "`listconst' `=800+`maxdif'*(`j'-1)+`p''" qui constraint list `=800+`maxdif'*(`j'-1)+`p'' } if dif_rc[`j',6]!=. & dif_rc[`j',6]!=0 { // RC commune unif. if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ local listconst "`listconst' `=1000+`maxdif'*(`j'-1)+`p''" qui constraint list `=1000+`maxdif'*(`j'-1)+`p'' } } } } else { // RC diff if dif_rc[`j',5]==. | dif_rc[`j',5]==0 { // RC gp0 (400) forvalues p=1/`nbdif_`j''{ local listconst "`listconst' `=400+`maxdif'*(`j'-1)+`p''" qui constraint list `=400+`maxdif'*(`j'-1)+`p'' } } if dif_rc[`j',6]!=. & dif_rc[`j',6]!=0 { // RCU gp0 (1001-1200) if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ local listconst "`listconst' `=1000+`maxdif'*(`j'-1)+`p''" qui constraint list `=1000+`maxdif'*(`j'-1)+`p'' } } } if dif_rc[`j',7]==. | dif_rc[`j',7]==0 { // RC gp1 (600) forvalues p=1/`nbdif_`j''{ local listconst "`listconst' `=600+`maxdif'*(`j'-1)+`p''" qui constraint list `=600+`maxdif'*(`j'-1)+`p'' } } if dif_rc[`j',8]!=. & dif_rc[`j',8]!=0 { // RCU gp1 (1201-1400) if `nbmoda_`j'' > 2 { forvalues p=2/`nbdif_`j''{ local listconst "`listconst' `=1200+`maxdif'*(`j'-1)+`p''" qui constraint list `=1200+`maxdif'*(`j'-1)+`p'' } } } } } } qui di "`listconst'" local model "" forvalues jj=1/`nbitems'{ forvalues p=1/`nbdif_`jj''{ local model "`model' (`p'.``jj''<-THETA1@`p')(`p'.``=`jj'+`nbitems'''<-THETA2@`p')" } } if "`group'" != "" { qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) means(0: THETA1@0 THETA2@m20) means(1: THETA1@m11 THETA2@m21) var(0: THETA1@v1 THETA2@v2) var(1:THETA1@v1 THETA2@v2) cov(0: THETA1*THETA2@cov12) cov(1: THETA1*THETA2@cov12) constraint(`listconst') from(esti_2, skip) } else { qui gsem `model', mlogit tol(0.01) iterate(100) means( THETA1@0 THETA2@m2) var(THETA1@v1 THETA2@v2) cov(THETA1*THETA2@cov12) constraint(`listconst') from(esti_2, skip) } /* Stockage des estimations du modèle */ matrix val_m4 = r(table) matrix esti_4 = e(b) if "`group'" != "" { matrix var_m4 = (val_m4[1,"/var(THETA1)#0bn.`gp'"],val_m4[1,"/var(THETA2)#0bn.`gp'"]\val_m4[2,"/var(THETA1)#0bn.`gp'"],val_m4[2,"/var(THETA2)#0bn.`gp'"]) matrix covar_m4 = (val_m4[1,"/cov(THETA1,THETA2)#0.`gp'"],val_m4[1,"/cov(THETA1,THETA2)#1.`gp'"]\val_m4[2,"/cov(THETA1,THETA2)#0.`gp'"],val_m4[2,"/cov(THETA1,THETA2)#1.`gp'"]\val_m4[4,"/cov(THETA1,THETA2)#0.`gp'"],val_m4[4,"/cov(THETA1,THETA2)#1.`gp'"]) } else { matrix var_m4 = (val_m4[1,"/var(THETA1)"],val_m4[1,"/var(THETA2)"]\val_m4[2,"/var(THETA1)"],val_m4[2,"/var(THETA2)"]) matrix covar_m4 = (val_m4[1,"/cov(THETA1,THETA2)"]\val_m4[2,"/cov(THETA1,THETA2)"]\val_m4[4,"/cov(THETA1,THETA2)"]) } /* Matrice des tests effet grp, tps et inter */ matrix effet = J(5,3,.) matrix colnames effet= Groupe Temps Interaction matrix rownames effet = Esti Std_Err Pvalue Chi DF /*group effect*/ if "`group'" != "" { qui lincom [/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp' matrix effet[1,1] =r(estimate) matrix effet[2,1]=r(se) qui test [/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp' = 0 matrix effet[3,1]=r(p) matrix effet[4,1]=r(chi2) matrix effet[5,1]=r(df) } /*time effect*/ if "`group'" != "" { qui lincom [/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#0bn.`gp' matrix effet[1,2]=r(estimate) matrix effet[2,2]=r(se) qui test [/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#0bn.`gp' = 0 matrix effet[3,2]=r(p) matrix effet[4,2]=r(chi2) matrix effet[5,2]=r(df) } else { qui lincom [/]:mean(THETA2) /* -[/]:mean(THETA1)*/ local teffm4=r(estimate) local seteffm4=r(se) local ubteffm4 = r(ub) local lbteffm4 = r(lb) qui test [/]:mean(THETA2) /* -[/]:mean(THETA1) */ = 0 local tm4p=r(p) local tm4chi=r(chi2) local tm4df=r(df) } *INTERACTION if "`group'" != "" { qui lincom [/]:mean(THETA2)#1.`gp'-[/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#1.`gp'+[/]:mean(THETA1)#0bn.`gp' matrix effet[1,3]=r(estimate) matrix effet[2,3]=r(se) local ubinterm4=r(ub) local lbinterm4=r(lb) qui test [/]:mean(THETA2)#1.`gp'-[/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#1.`gp'+[/]:mean(THETA1)#0bn.`gp' = 0 matrix effet[3,3]=r(p) matrix effet[4,3]=r(chi2) matrix effet[5,3]=r(df) } if "`group'" != "" { local effet_tps = 0 local effet_grp = 0 if effet[3,3] >= 0.05 { // Si option group, on s'interesse à l'interaction temps x group, et MAJ modèle >>> modèle final = modèle 4 + contrainte 1999 (Interaction = 0) /* Affichage des estimations sur le trait latent du modèle 4 */ di di _col(10) in ye "Latent trait estimates" di _col(10) "{hline 80}" di _col(45) in ye "Estimate" _col(60) "Standard error" _col(77) "P-value" di _col(10) "{hline 80}" di _col(10) in ye "Variance Time 1" in gr _col(44) %6.2f `=var_m4[1,1]' _col(62) %6.2f `=var_m4[2,1]' di _col(10) in ye "Variance Time 2" in gr _col(44) %6.2f `=var_m4[1,2]' _col(62) %6.2f `=var_m4[2,2]' di _col(10) in ye "Covariance" in gr _col(44) %6.2f `=covar_m4[1,1]' _col(62) %6.2f `=covar_m4[2,1]' if "`group'" != "" { di _col(10) in ye "Group effect (mean gp 1 at T1)" in gr _col(44) %6.2f effet[1,1] _col(62) %6.2f effet[2,1] _col(77) %6.4f effet[3,1] } di _col(10) in ye "Time effect (mean gp 0 at T2)" in gr _col(44) %6.2f effet[1,2] _col(62) %6.2f effet[2,2] _col(77) %6.4f effet[3,2] if "`group'" != "" { di _col(10) in ye "TimexGroup inter" in gr _col(44) %6.2f effet[1,3] _col(62) %6.2f effet[2,3] _col(77) %6.4f effet[3,3] } di _col(10) "{hline 80}" di di in ye ">>> Time x group interaction : no significant test, estimate of model 4 with constraint of time x group interaction at 0 " di local yn_inter = 0 local listconst "`listconst' 1999" qui di "`listconst'" local model "" forvalues jj=1/`nbitems'{ forvalues p=1/`nbdif_`jj''{ local model "`model' (`p'.``jj''<-THETA1@`p')(`p'.``=`jj'+`nbitems'''<-THETA2@`p')" } } qui gsem `model', mlogit tol(0.01) iterate(100) group(`gp') ginvariant(coef loading) means(0: THETA1@0 THETA2@m20) means(1: THETA1@m11 THETA2@m21) var(0: THETA1@v1 THETA2@v2) var(1:THETA1@v1 THETA2@v2) cov(0: THETA1*THETA2@cov12) cov(1: THETA1*THETA2@cov12) constraint(`listconst') from(esti_4, skip) matrix val_m4 = r(table) } else { local yn_inter = 1 } /*group effect*/ qui lincom [/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp' local geffm4=r(estimate) local segeffm4=r(se) local ubgeffm4=r(ub) local lbgeffm4=r(lb) qui test [/]:mean(THETA1)#1.`gp'-[/]:mean(THETA1)#0bn.`gp'=0 local gpm4p=r(p) local gpm4chi=r(chi2) local gpm4df=r(df) /*time effect*/ qui lincom [/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#0bn.`gp' local teffm4=r(estimate) local seteffm4=r(se) local lbteffm4=r(lb) local ubteffm4=r(ub) qui test [/]:mean(THETA2)#0bn.`gp'-[/]:mean(THETA1)#0bn.`gp'=0 local tm4p=r(p) local tm4chi=r(chi2) local tm4df=r(df) } /* Calcul des difficultés (delta_j) */ if "`group'" != "" { matrix mod4 = J(7,`=`nbmoda_sum'*4+6',.) local name_partTwoC "" forvalues j = 1/`nbitems' { forvalues p=1/`nbdif_`j'' { forvalues t=1/2 { forvalues g = 0/1 { local name_partTwoC "`name_partTwoC' d_j`j'_p`p'_gp`g'_t`t'" } } } } local name_partTwoC "`name_partTwoC' VAR(THETA1) VAR(THETA2) COV(TH1,TH2) GROUP_Effect TIME_Effect INTER_TxG " matrix colnames mod4 = `name_partTwoC' matrix rownames mod4 = Estimate se Upper_b Lower_b Chi_square DF pvalue } else { matrix mod4 = J(7,`=`nbmoda_sum'*2+4',.) local name_partTwoC "" forvalues j = 1/`nbitems' { forvalues p=1/`nbdif_`j'' { forvalues t=1/2 { local name_partTwoC "`name_partTwoC' d_j`j'_p`p'_t`t'" } } } local name_partTwoC "`name_partTwoC' VAR(THETA1) VAR(THETA2) COV(TH1,TH2) TIME_Effect " matrix colnames mod4 = `name_partTwoC' matrix rownames mod4 = Estimate se Upper_b Lower_b Chi_square DF pvalue } *Difficultés forvalues j=1/`nbitems'{ forvalues p=1/`nbdif_`j''{ forvalues t=1/2{ if "`group'" != "" { // groupe binaire forvalues g=0/1 { qui lincom -[`p'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' local delta`t'_`j'_`p'g`g'm4= r(estimate) local delta`t'_`j'_`p'g`g'm4_se= r(se) local delta`t'_`j'_`p'g`g'm4_ub=r(ub) local delta`t'_`j'_`p'g`g'm4_lb=r(lb) local delta`t'_`j'_`p'g`g'm4_p=r(p) if `p'>1 { qui lincom [`=`p'-1'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' - [`p'.``=(`t'-1)*`nbitems'+`j''']:`g'.`gp' local delta`t'_`j'_`p'g`g'm4=r(estimate) local delta`t'_`j'_`p'g`g'm4_se=r(se) local delta`t'_`j'_`p'g`g'm4_ub=r(ub) local delta`t'_`j'_`p'g`g'm4_lb=r(lb) local delta`t'_`j'_`p'g`g'm4_p=r(p) } local place = 0 local compt = 1 while `compt' < `j' { local place = `place' + `nbdif_`compt'' local ++compt } if `t' == 1 { matrix mod4[1,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm4' matrix mod4[2,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm4_se' matrix mod4[3,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm4_ub' matrix mod4[4,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm4_lb' matrix mod4[7,`=4*(`p'-1)+`g'+`t'+4*`place'']=`delta`t'_`j'_`p'g`g'm4_p' } if `t' == 2 { matrix mod4[1,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm4' matrix mod4[2,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm4_se' matrix mod4[3,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm4_ub' matrix mod4[4,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm4_lb' matrix mod4[7,`=4*(`p'-1)+`g'+`t'+1+4*`place'']=`delta`t'_`j'_`p'g`g'm4_p' } } } else { // groupe unique (=gp0) qui lincom -[`p'.``=(`t'-1)*`nbitems'+`j''']_cons local delta`t'_`j'_`p'g0m4= r(estimate) local delta`t'_`j'_`p'g0m4_se= r(se) local delta`t'_`j'_`p'g0m4_ub=r(ub) local delta`t'_`j'_`p'g0m4_lb=r(lb) local delta`t'_`j'_`p'g0m4_p=r(p) if `p'>1{ qui lincom [`=`p'-1'.``=(`t'-1)*`nbitems'+`j''']_cons - [`p'.``=(`t'-1)*`nbitems'+`j''']_cons local delta`t'_`j'_`p'g0m4=r(estimate) local delta`t'_`j'_`p'g0m4_se=r(se) local delta`t'_`j'_`p'g0m4_ub=r(ub) local delta`t'_`j'_`p'g0m4_lb=r(lb) local delta`t'_`j'_`p'g0m4_p=r(p) } local place = 0 local compt = 1 while `compt' < `j' { local place = `place' + `nbdif_`compt'' local ++compt } if `t' == 1 { matrix mod4[1,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4' matrix mod4[2,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4_se' matrix mod4[3,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4_ub' matrix mod4[4,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4_lb' matrix mod4[7,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4_p' } if `t' == 2 { matrix mod4[1,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4' matrix mod4[2,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4_se' matrix mod4[3,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4_ub' matrix mod4[4,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4_lb' matrix mod4[7,`=2*(`p'-1)+`t'+2*`place'']=`delta`t'_`j'_`p'g0m4_p' } } } } } if "`group'" != "" { matrix mod4[1,`=4*`nbmoda_sum'+1'] = (val_m4[1,"/var(THETA1)#0bn.`gp'"], val_m4[1,"/var(THETA2)#0bn.`gp'"]) matrix mod4[2,`=4*`nbmoda_sum'+1'] = (val_m4[2,"/var(THETA1)#0bn.`gp'"],val_m4[2,"/var(THETA2)#0bn.`gp'"]) matrix mod4[3,`=4*`nbmoda_sum'+1'] = (val_m4[6,"/var(THETA1)#0bn.`gp'"],val_m4[6,"/var(THETA2)#0bn.`gp'"]) matrix mod4[4,`=4*`nbmoda_sum'+1'] = (val_m4[5,"/var(THETA1)#0bn.`gp'"],val_m4[5,"/var(THETA2)#0bn.`gp'"]) matrix mod4[1,`=4*`nbmoda_sum'+2+1'] = (val_m4[1,"/cov(THETA1,THETA2)#0.`gp'"]) matrix mod4[2,`=4*`nbmoda_sum'+2+1'] = (val_m4[2,"/cov(THETA1,THETA2)#0.`gp'"]) matrix mod4[3,`=4*`nbmoda_sum'+2+1'] = (val_m4[6,"/cov(THETA1,THETA2)#0.`gp'"]) matrix mod4[4,`=4*`nbmoda_sum'+2+1'] = (val_m4[5,"/cov(THETA1,THETA2)#0.`gp'"]) matrix mod4[1,`=4*`nbmoda_sum'+2+1+1'] = `geffm4' matrix mod4[2,`=4*`nbmoda_sum'+2+1+1'] = `segeffm4' matrix mod4[3,`=4*`nbmoda_sum'+2+1+1'] = `ubgeffm4' matrix mod4[4,`=4*`nbmoda_sum'+2+1+1'] = `lbgeffm4' matrix mod4[5,`=4*`nbmoda_sum'+2+1+1'] = `gpm4chi' matrix mod4[6,`=4*`nbmoda_sum'+2+1+1'] = `gpm4df' matrix mod4[7,`=4*`nbmoda_sum'+2+1+1'] = `gpm4p' matrix mod4[1,`=4*`nbmoda_sum'+2+1+1+1'] = `teffm4' matrix mod4[2,`=4*`nbmoda_sum'+2+1+1+1'] = `seteffm4' matrix mod4[3,`=4*`nbmoda_sum'+2+1+1+1'] = `ubteffm4' matrix mod4[4,`=4*`nbmoda_sum'+2+1+1+1'] = `lbteffm4' matrix mod4[5,`=4*`nbmoda_sum'+2+1+1+1'] = `tm4chi' matrix mod4[6,`=4*`nbmoda_sum'+2+1+1+1'] = `tm4df' matrix mod4[7,`=4*`nbmoda_sum'+2+1+1+1'] = `tm4p' if `yn_inter' == 1 { //Slmt si model avec interaction matrix mod4[1,`=4*`nbmoda_sum'+2+1+1+1+1'] = effet[1,3] matrix mod4[2,`=4*`nbmoda_sum'+2+1+1+1+1'] = effet[2,3] matrix mod4[3,`=4*`nbmoda_sum'+2+1+1+1+1'] = `ubinterm4' matrix mod4[4,`=4*`nbmoda_sum'+2+1+1+1+1'] = `lbinterm4' matrix mod4[5,`=4*`nbmoda_sum'+2+1+1+1+1'] = effet[4,3] matrix mod4[6,`=4*`nbmoda_sum'+2+1+1+1+1'] = effet[5,3] matrix mod4[7,`=4*`nbmoda_sum'+2+1+1+1+1'] = effet[3,3] } } else { matrix mod4[1,`=2*`nbmoda_sum'+1'] = (val_m4[1,"/var(THETA1)"],val_m4[1,"/var(THETA2)"]) matrix mod4[2,`=2*`nbmoda_sum'+1'] = (val_m4[2,"/var(THETA1)"],val_m4[2,"/var(THETA2)"]) matrix mod4[3,`=2*`nbmoda_sum'+1'] = (val_m4[6,"/var(THETA1)"],val_m4[6,"/var(THETA2)"]) matrix mod4[4,`=2*`nbmoda_sum'+1'] = (val_m4[5,"/var(THETA1)"],val_m4[5,"/var(THETA2)"]) matrix mod4[1,`=2*`nbmoda_sum'+2+1'] = (val_m4[1,"/cov(THETA1,THETA2)"]) matrix mod4[2,`=2*`nbmoda_sum'+2+1'] = (val_m4[2,"/cov(THETA1,THETA2)"]) matrix mod4[3,`=2*`nbmoda_sum'+2+1'] = (val_m4[6,"/cov(THETA1,THETA2)"]) matrix mod4[4,`=2*`nbmoda_sum'+2+1'] = (val_m4[5,"/cov(THETA1,THETA2)"]) matrix mod4[1,`=2*`nbmoda_sum'+2+1+1'] = `teffm4' matrix mod4[2,`=2*`nbmoda_sum'+2+1+1'] = `seteffm4' matrix mod4[3,`=2*`nbmoda_sum'+2+1+1'] = `ubteffm4' matrix mod4[4,`=2*`nbmoda_sum'+2+1+1'] = `lbteffm4' matrix mod4[5,`=2*`nbmoda_sum'+2+1+1'] = `tm4chi' matrix mod4[6,`=2*`nbmoda_sum'+2+1+1'] = `tm4df' matrix mod4[7,`=2*`nbmoda_sum'+2+1+1'] = `tm4p' } /* Affichage des estimations des difficultés */ di _col(5) in ye "{ul:MODEL 4} = Final model" di di _col(10) in ye "Item difficulties estimates (s.e.)" if "`group'" != "" { di _col(10) "{hline 85}" di _col(30) "Time 1" _col(70) "Time 2" di in ye _col(20) abbrev("`gp'",15) "=0" _col(38) abbrev("`gp'",15) "=1" _col(58) abbrev("`gp'",15) "=0" _col(76) abbrev("`gp'",15) "=1" di _col(10) "{hline 85}" } else { di _col(10) "{hline 50}" di _col(30) "Time 1" _col(45) "Time 2" di _col(10) "{hline 50}" } forvalues j=1/`nbitems' { di in ye _col(10) "``j''" forvalues p=1/`nbdif_`j'' { if "`group'" != "" { di in gr _col(10) "`p'" _col(20) %6.2f `delta1_`j'_`p'g0m4' " (" %4.2f `delta1_`j'_`p'g0m4_se' ")" _col(38) %6.2f `delta1_`j'_`p'g1m4' " (" %4.2f `delta1_`j'_`p'g1m4_se' ")" /// _col(58) %6.2f `delta2_`j'_`p'g0m4' " (" %4.2f `delta2_`j'_`p'g0m4_se' ")" _col(76) %6.2f `delta2_`j'_`p'g1m4' " (" %4.2f `delta2_`j'_`p'g1m4_se' ")" } else { di in gr _col(10) "`p'" _col(25) %6.2f `delta1_`j'_`p'g0m4' " (" %4.2f `delta1_`j'_`p'g0m4_se' ")" _col(42) %6.2f `delta2_`j'_`p'g0m4' " (" %4.2f `delta2_`j'_`p'g0m4_se' ")" } } } if "`group'" != "" { di _col(10) "{hline 85}" } else { di _col(10) "{hline 50}" } /* Affichage des estimations sur le trait latent du modèle final */ di di _col(10) in ye "Latent trait distribution estimates" di _col(10) "{hline 80}" di _col(45) in ye "Estimate" _col(60) "Standard error" _col(77) "P-value" di _col(10) "{hline 80}" if "`group'" == "" { local fact_k = 2 } else { local fact_k = 4 } di _col(10) in ye "Variance Time 1" in gr _col(44) %6.2f `=mod4[1,`=`fact_k'*`nbmoda_sum'+1']' _col(62) %6.2f =mod4[2,`=`fact_k'*`nbmoda_sum'+1'] di _col(10) in ye "Variance Time 2" in gr _col(44) %6.2f `=mod4[1,`=`fact_k'*`nbmoda_sum'+2']' _col(62) %6.2f `=mod4[2,`=`fact_k'*`nbmoda_sum'+2']' di _col(10) in ye "Covariance" in gr _col(44) %6.2f `=mod4[1,`=`fact_k'*`nbmoda_sum'+3']' _col(62) %6.2f `=mod4[2,`=`fact_k'*`nbmoda_sum'+3']' if "`group'" != "" { di _col(10) in ye "Group effect (mean gp 1 at T1)" in gr _col(44) %6.2f `geffm4' _col(62) %6.2f `segeffm4' _col(77) %6.4f `gpm4p' } di _col(10) in ye "Time effect (mean gp 0 at T2)" in gr _col(44) %6.2f `teffm4' _col(62) %6.2f `seteffm4' _col(77) %6.4f `tm4p' if "`group'" != "" { if effet[3,3] < 0.05 { di _col(10) in ye "TimexGroup inter" in gr _col(44) %6.2f effet[1,3] _col(62) %6.2f effet[2,3] _col(77) %6.4f effet[3,3] } else { di _col(10) in ye "TimexGroup inter" in gr _col(44) "0 (constrained)" } } di _col(10) "{hline 80}" /***************************************/ /* Calcul des valeurs de DIF et de RC */ /*************************************/ forvalues j=1/`nbitems' { if `nbmoda_`j'' >= 2 { matrix valeur_difrc_`j' = J(`nbdif_`j'',8,.) matrix colnames valeur_difrc_`j' = DIFT1 DIFT1_SE RC_GP0 RC_GP0_SE RC_GP1 RC_GP1_SE } } forvalues j=1/`nbitems'{ if `nbmoda_`j'' >= 2 { if "`group'" != "" { *DIF if "`nodif'"=="" { if (dif_rc[`j',1] != . ) { forvalues p=1/`nbdif_`j'' { if `p' == 1 { qui lincom -[1.``j'']:1.`gp'+[1.``j'']:0.`gp' matrix valeur_difrc_`j'[`p',1] = r(estimate) matrix valeur_difrc_`j'[`p',2] = round(r(se),0.01) } if `p' > 1 { qui lincom [`=`p'-1'.``j'']:1.`gp' - [`p'.``j'']:1.`gp' -[`=`p'-1'.``j'']:0.`gp' + [`p'.``j'']:0.`gp' matrix valeur_difrc_`j'[`p',1] = r(estimate) matrix valeur_difrc_`j'[`p',2] = round(r(se),0.01) } } } } *RC GROUP 0 if (dif_rc[`j',3] != . & dif_rc[`j',5] != . ) { forvalues p=1/`nbdif_`j'' { qui lincom -[1.``=`j'+`nbitems''']:0.`gp' + [1.``j'']:0.`gp' matrix valeur_difrc_`j'[`p',3] = r(estimate) matrix valeur_difrc_`j'[`p',4] = round(r(se),0.01) if `p' > 1 { qui lincom [`=`p'-1'.``=`j'+`nbitems''']:0.`gp' - [`p'.``=`j'+`nbitems''']:0.`gp' -[`=`p'-1'.``j'']:0.`gp' + [`p'.``j'']:0.`gp' matrix valeur_difrc_`j'[`p',3] = r(estimate) matrix valeur_difrc_`j'[`p',4] = round(r(se),0.01) } } } *RC GROUP 1 if (dif_rc[`j',3] != . & dif_rc[`j',7] != . ) { forvalues p=1/`nbdif_`j'' { qui lincom -[1.``=`j'+`nbitems''']:1.`gp' + [1.``j'']:1.`gp' matrix valeur_difrc_`j'[`p',5] = r(estimate) matrix valeur_difrc_`j'[`p',6] = round(r(se),0.01) if `p' > 1 { qui lincom [`=`p'-1'.``=`j'+`nbitems''']:1.`gp' - [`p'.``=`j'+`nbitems''']:1.`gp' -[`=`p'-1'.``j'']:1.`gp' + [`p'.``j'']:1.`gp' matrix valeur_difrc_`j'[`p',5] = r(estimate) matrix valeur_difrc_`j'[`p',6] = round(r(se),0.01) } } } } else { forvalues p=1/`nbdif_`j'' { qui lincom -[1.``=`j'+`nbitems''']_cons + [1.``j'']_cons matrix valeur_difrc_`j'[`p',3] = r(estimate) matrix valeur_difrc_`j'[`p',4] = round(r(se),0.01) if `p' > 1 { qui lincom [`=`p'-1'.``=`j'+`nbitems''']_cons - [`p'.``=`j'+`nbitems''']_cons -[`=`p'-1'.``j'']_cons + [`p'.``j'']_cons matrix valeur_difrc_`j'[`p',3] = r(estimate) matrix valeur_difrc_`j'[`p',4] = round(r(se),0.01) } } } } } forvalues j = 1/`nbitems' { if `nbmoda_`j'' >= 2 { forvalues p = 1/`nbdif_`j'' { forvalues k = 1/8 { if valeur_difrc_`j'[`p',`k'] == . { matrix valeur_difrc_`j'[`p',`k'] = 0 } } } } } /* Affichage des estimations des valeurs de DIF et de RC */ di di _col(10) in ye "Values of differences between groups and values of recalibration" if "`group'" != "" & "`nodif'"==""{ di _col(10) "{hline 70}" di _col(30) "Difference of" _col(52) "RECALIBRATION" di _col(30) "groups at T1" _col(47) in ye abbrev("`gp'",15) "=0" _col(62) abbrev("`gp'",15) " =1" di _col(10) "{hline 70}" } else if "`group'" != "" & "`nodif'"!="" { di _col(10) "{hline 50}" di _col(32) "RECALIBRATION" di in ye _col(27) "`gp'=`=rep[1,1]'" _col(47) "`gp'=`=rep[2,1]'" di _col(10) "{hline 50}" } else { di _col(10) "{hline 30}" di _col(15) "RECALIBRATION" di _col(10) "{hline 30}" } forvalues j=1/`nbitems' { if `nbmoda_`j'' >= 2 { if "`group'" != "" & "`nodif'" == "" { di in ye _col(10) "``j''" } else { di in ye _col(10) "``j''" } forvalues p=1/`nbdif_`j'' { if "`group'" != "" & "`nodif'"=="" { di in gr _col(10) "`p'" _col(29) %6.2f `=valeur_difrc_`j'[`p',1]' " (" %4.2f `=valeur_difrc_`j'[`p',2]' ")" /// _col(47) %6.2f `=valeur_difrc_`j'[`p',3]' " (" %4.2f `=valeur_difrc_`j'[`p',4]' ")" _col(62) %6.2f `=valeur_difrc_`j'[`p',5]' " (" %4.2f `=valeur_difrc_`j'[`p',6]' ")" } else if "`group'" != "" & "`nodif'"!="" { di in gr _col(10) "`p'" _col(25) %6.2f `=valeur_difrc_`j'[`p',3]' " (" %4.2f `=valeur_difrc_`j'[`p',4]' ")" _col(45) %6.2f `=valeur_difrc_`j'[`p',5]' " (" %4.2f `=valeur_difrc_`j'[`p',6]' ")" } else { di in gr _col(10) "`p'" _col(25) %6.2f `=valeur_difrc_`j'[`p',3]' " (" %4.2f `=valeur_difrc_`j'[`p',4]' ")" } } } } if "`group'" != "" & "`nodif'"=="" { di _col(10) "{hline 70}" } else if "`group'" != "" & "`nodif'"!=""{ di _col(10) "{hline 50}" } else { di _col(10) "{hline 30}" } di ***************************************************** ** OUTPUTS POUR SIMULATIONS ** ***************************************************** /* forvalues j= `nbitems' (-1) 1 { if `nbmoda_`j'' >= 2 { return matrix val_difrc_item`j'=valeur_difrc_`j' } } * Modèle 4 return matrix table_m4 = val_m4 return matrix covariance_m4 = covar_m4 return matrix variance_m4 = var_m4 return matrix se_diff_m4 = delta_m4_se return matrix difficultiesm4 = delta_m4 if "`group'" != "" { return scalar with_inter=`yn_inter' *Inter return scalar interm4df=effet[5,3] return scalar interm4chi=effet[4,3] return scalar interm4p=effet[3,3] return scalar interm4se=effet[2,3] return scalar interm4=effet[1,3] *Retour paramètres théta modèle 4 if effet[3,3] < 0.05 { // Si modèle avec inter return scalar teffm4df=effet[5,2] return scalar teffm4chi=effet[4,2] return scalar teffm4p=effet[3,2] return scalar teffm4se=effet[2,2] return scalar teffm4= effet[1,2] * Effet groupe return scalar gpeffm4df=effet[5,1] return scalar gpeffm4chi=effet[4,1] return scalar gpeffm4p=effet[3,1] return scalar gpeffm4se=effet[2,1] return scalar gpeffm4=effet[1,1] } if effet[3,3] >= 0.05 { * Effet temps return scalar teffm4df=`tm4df' return scalar teffm4chi=`tm4chi' return scalar teffm4p=`tm4p' return scalar teffm4se=`seteffm4' return scalar teffm4=`teffm4' * Effet groupe return scalar gpeffm4df=`gpm4df' return scalar gpeffm4chi=`gpm4chi' return scalar gpeffm4p=`gpm4p' return scalar gpeffm4se=`segeffm4' return scalar gpeffm4=`geffm4' } } else { if effet[3,3] < 0.05 { // Si modèle avec inter return scalar teffm4df=effet[5,2] return scalar teffm4chi=effet[4,2] return scalar teffm4p=effet[3,2] return scalar teffm4se=effet[2,2] return scalar teffm4= effet[1,2] } if effet[3,3] >= 0.05 { * Effet temps return scalar teffm4df=`tm4df' return scalar teffm4chi=`tm4chi' return scalar teffm4p=`tm4p' return scalar teffm4se=`seteffm4' return scalar teffm4=`teffm4' } } * Boucle de RC if `nb_step3' != 0 { forvalues item = 1/`nbitems' { forvalues s =1/`=`nb_step3'-1' { if dif_rc[`item',4] == 0 & dif_rc[`item',3]==`s' & `nbmoda_`item'' > 2 { return matrix commU_bcle`s'=commU_`s' } } } } if `nb_step3' != 0 { forvalues s =1/`nb_step3' { return matrix ptest_rc_bcle`s'=ptest_rc_`s' return matrix chitest_rc_bcle`s'=chitest_rc_`s' return matrix dftest_rc_bcle`s'=dftest_rc_`s' } } * Modèle 2 return matrix table_m2 = val_m2 return matrix covariance_m2 = covar_m2 return matrix variance_m2 = var_m2 return matrix se_diff_m2 = delta_m2_se return matrix difficultiesm2 = delta_m2 * Effet temps if "`group'" != "" { * Interaction return scalar interm2df=`interm2df' return scalar interm2chi=`interm2chi' return scalar interm2p=`interm2p' return scalar interm2se=`seinterm2' return scalar interm2=`interm2' } return scalar teffm2df=`tm2df' return scalar teffm2chi=`tm2chi' return scalar teffm2p=`tm2p' return scalar teffm2se=`seteffm2' return scalar teffm2=`teffm2' if "`group'" != "" { // SI option group * Effet groupe return scalar gpeffm2df=`gpm2df' return scalar gpeffm2chi=`gpm2chi' return scalar gpeffm2p=`gpm2p' return scalar gpeffm2se=`segeffm2' return scalar gpeffm2=`geffm2' } * Modèle 1 return matrix table_m1 = val_m1 return matrix covariance_m1 = covar_m1 return matrix variance_m1 = var_m1 return matrix se_diff_m1 = delta_m1_se return matrix difficultiesm1 = delta_m1 if "`group'" != "" { // Si option group * Effet groupe return scalar gpeffm1df=`gpm1df' return scalar gpeffm1chi=`gpm1chi' return scalar gpeffm1p=`gpm1p' return scalar gpeffm1se=`segeffm1' return scalar gpeffm1=`geffm1' } * Modèle C if "`group'" != "" & "`nodif'"=="" { if `nb_stepC' != 0 { forvalues s =1/`nb_stepC' { return matrix ptest_dif_bcle`s'=ptest_dif_`s' return matrix chitest_dif_bcle`s'=chitest_dif_`s' return matrix dftest_dif_bcle`s'=dftest_dif_`s' } if `nb_stepC' != 1 { * Effet groupe return scalar gpeffmCdf=`gcmCFindf' return scalar gpeffmCchi=`gcmCFinchi' return scalar gpeffmCp=`gcmCFinp' return scalar gpeffmCse=`segeffmCFin' return scalar gpeffmC=`geffmCFin' *Retour modèle C Final return matrix table_mC = val_mC return matrix variance_mC = var_mC return matrix se_diff_mC = delta_mCFin_se return matrix difficultiesmC = delta_mCFin } } * Modèle B return matrix table_mB = val_mB return matrix variance_mB = var_mB return matrix se_diff_mB = delta_mB_se return matrix difficultiesmB = delta_mB * Effet groupe return scalar gpeffmBdf=`gcmBdf' return scalar gpeffmBchi=`gcmBchi' return scalar gpeffmBp=`gcmBp' return scalar gpeffmBse=`segeffmB' return scalar gpeffmB=`geffmB' *Modèle A return matrix table_mA = val_mA return matrix variance_mA = var_mA return matrix se_diff_mA = delta_mA_se return matrix difficultiesmA = delta_mA } *Matrice dif_rc return matrix rcres=dif_rc forvalues j = 1/`nbitems' { local colnam = "`colnam' item`j'" } return matrix modait= nbmod *Retour test modèle 1 vs modèle 2 return scalar rstchi12=`rstestchi' return scalar rstdf12=`rstestdf' return scalar rstp12=`rstestp' if "`group'" != "" & "`nodif'"=="" { *Retour test modèle A vs modèle B return scalar diftchiAB=`diftestchi' return scalar diftdfAB=`diftestdf' return scalar diftpAB=`diftestp' } //return scalar nb_boucle_rc=`nb_step3' /* if "`group'" != "" & "`nodif'"==""{ return scalar nb_boucle_dif=`nb_stepC' } */ timer off 1 qui timer list 1 local temps = r(t1) local minute = floor(`=`temps'/60') local seconde = floor(`temps' - `=`minute'*60') //di "Time : `temps's = `minute'min `seconde's" */ //return scalar time = `temps' ******************************************************************************* * New outputs if "`group'" == "" { matrix testlrm = J(1,3,.) matrix colnames testlrm = chi_square df pvalue matrix rownames testlrm = m1_vs_m2 matrix testlrm[1,1] = (`rstestchi',`rstestdf',`rstestp') return matrix test_model = testlrm } else if "`nodif'" != "" { matrix testlrm = J(1,3,.) matrix colnames testlrm = chi_square df pvalue matrix rownames testlrm = m1_vs_m2 matrix testlrm[1,1] = (`rstestchi',`rstestdf',`rstestp') return matrix test_model = testlrm } else { matrix testlrm = J(2,3,.) matrix colnames testlrm = chi_square df pvalue matrix rownames testlrm = mA_vs_mB m1_vs_m2 matrix testlrm[1,1] = (`diftestchi',`diftestdf',`diftestp') matrix testlrm[2,1] = (`rstestchi',`rstestdf',`rstestp') return matrix test_model = testlrm } return matrix model_4 = mod4 return matrix model_2 = mod2 end