*! Version 2.1 18october2011 ************************************************************************************************************ * Stata program : pcm * Estimate the parameters of the Partial Credit Model * Version 1 : December 17, 2007 * Version 2 : July 15, 2011 * Version 2.1 : October 18th, 2011 : -fixedvar- option, new presentation * * Jean-benoit Hardouin, EA4275 Biostatistics, Clinical Research and Subjective Measures in Health Sciences * Faculties of Pharmaceutical Sciences & Medicine - University of Nantes - France * jean-benoit.hardouin@univ-nantes.fr * * News about this program : http://www.anaqol.org * FreeIRT Project : http://www.freeirt.org * * Copyright 2007, 2011 Jean-Benoit Hardouin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ************************************************************************************************************/ program define pcm,eclass version 8.0 syntax varlist(min=3 numeric) [if] [in] [,rsm fixed(string) fixedvar(real -1) fixedmu short COVariates(varname)] preserve tempfile pcmfile qui save `pcmfile',replace if "`fixedmu'"!=""&`fixedvar'!=-1&"`covariates'"=="" { di in red "You cannot fix in the same time the mean (fixedmu option) and the variance (fixedvar option) of the latent trait without covariables" error 184 } if "`fixed'"!=""&"`fixedmu'"==""&`fixedvar'!=-1&"`covariates'"=="" { di in red "You cannot fix in the same time the difficulties (fixed option) and the variance (fixedvar option) of the latent trait without covariables" error 184 } /******************************************************************************* ESTIMATION OF THE PARAMETERS ********************************************************************************/ marksample touse qui keep if `touse' qui count local N=r(N) tokenize `varlist' local nbitems : word count `varlist' if "`rsm'"=="" { di in gr "Model: " in ye "Partial Credit Model" } else { di in gr "Model: " in ye "Rating Scale Model" } tempname one var w id item it obs x chosen d score qui gen `one'=1 qui gen `id'=_n local modamax=0 forvalues i=1/`nbitems' { qui rename ``i'' `var'`i' qui su `var'`i' local moda`i'=`r(max)' if `modamax'<`r(max)' { local modamax=r(max) } } qui genscore `var'1-`var'`nbitems' ,score(`score') qui collapse (sum) `w'=`one',by(`var'1-`var'`nbitems' `covariates') qui gen `id'=_n qui reshape long `var',i(`id') j(`item') qui drop if `var'==. qui gen `obs'=_n qui expand `=`modamax'+1' qui sort `id' `item' `obs' by `obs', sort: gen `x'=_n-1 qui gen `chosen'=`var'==`x' qui tab `item', gen(`it') forvalues i=1/`nbitems' { forvalues g=1/`modamax' { qui gen `d'`i'_`g'=-1*`it'`i'*(`x'>=`g') } } qui rename `w' `w'2 bysort `id':egen score=sum(`x'*`chosen') qui su score local maxscore=r(max) if "`covariates'"!="" { qui gen covw=`covariates'*`x' local listcov covw } else { local listcov } if `fixedvar'!=-1 { local tmp=sqrt(`fixedvar') constraint 1 `x'=`tmp' local listconstr "constraints(1)" } if "`rsm'"=="" { if "`fixed'"!="" { qui gen offset=0 local l=1 forvalues i=1/`nbitems' { forvalues mi=1/`moda`i'' { qui replace offset=offset+`fixed'[1,`l']*`d'`i'_`mi' local ++l } } if "`fixedmu'"!="" { local mu } else { local mu "`x'" } eq slope:`x' noi di "gllamm `x' `listcov' `mu',offset(offset) `listconstr' nocons i(`id') eqs(slope) link(mlogit) expand(`obs' `chosen' o) weight(`w') adapt trace" gllamm `x' `listcov' `mu',offset(offset) `listconstr' nocons i(`id') eqs(slope) link(mlogit) expand(`obs' `chosen' o) weight(`w') adapt trace } else if "`short'"!="" { eq slope:`x' qui gllamm `x' `d'1_1-`d'`nbitems'_`modamax',i(`id') eqs(slope) link(mlogit) expand(`obs' `chosen' o) weight(`w') adapt trace nocons init tempname bsave Vsave matrix `bsave'=e(b) matrix `Vsave'=e(V) restore qui pcm `varlist' , fixed(`bsave') } else { di "no short" eq slope:`x' qui gen i=`id' constraint 1 `x'=1 gllamm `x' `d'1_1-`d'`nbitems'_`modamax' `listcov',i(i) `listconstr' eqs(slope) link(mlogit) expand(`obs' `chosen' o) weight(`w') adapt trace nocons } } else { tempname step n forvalues i=2/`modamax' { qui gen `step'`i'=-1*(`x'>=`i') } forvalues i=1/`nbitems' { qui gen `n'`var'`i'=(-1)*(`it'`i')*(`x') } qui sort `id' `item' `x' eq slope:`x' gllamm `x' `n'`var'1-`n'`var'`nbitems' `step'2-`step'`modamax' `listcov', i(`id') `listconstr' eqs(slope) link(mlogit) expand(`obs' `chosen' o) weight(`w') adapt trace nocons } tempname b V chol matrix b=e(b) matrix V=e(V) local ll=e(ll) matrix chol=e(chol) if "`rsm'"=="" { di di in gr "Number of observations: " in ye `N' di in gr "Number of items: " in ye `nbitems' di in gr "Number of parameters: " in ye `=`nbitems'*`modamax'+1' di in gr "Log-likelihood: " in ye `ll' di di di in gr "{hline 100}" di in gr "Item" _col(10) "Modality" _col(20) "Parameter" _col(30) "Std Error" di in gr "{hline 100}" if "`fixed'"=="" { forvalues i=1/`nbitems' { forvalues j=1/`modamax' { if `j'==1 { di in ye "``i''" _cont } local k=(`i'-1)*`modamax'+`j' if "`short'"!="" { di in ye _col(17) `j' _col(20) %9.6f `bsave'[1,`k'] in ye _col(30) %9.6f (`Vsave'[`k',`k'])^.5 } else { di in ye _col(17) `j' _col(20) %9.6f b[1,`k'] in ye _col(30) %9.6f (V[`k',`k'])^.5 } } di in gr "{dup 100:-}" } } else { forvalues i=1/`nbitems' { forvalues j=1/`modamax' { if `j'==1 { di in ye "``i''" _cont } local k=(`i'-1)*`modamax'+`j' di in ye _col(17) `j' _col(20) %9.6f `fixed'[1,`k'] in ye _col(32) "(fixed)" } di in gr "{dup 100:-}" } } if "`fixed'"==""&"`short'"=="" { local k=`nbitems'*`modamax'+1 } else if "`fixed'"!=""&"`fixedmu'"=="" { di in ye "Mu" in ye _col(20) %9.6f b[1,1] _col(29) %10.6f (V[1,1])^.5 local k=2 } else if "`fixed'"!=""&"`fixedmu'"!="" { di in ye "Mu" in ye _col(20) %9.6f 0 _col(32) %10.6f "(fixed)" local k=1 } else { local k=1 } if "`covariates'"!="" { di in ye "`covariates'" in ye _col(20) %9.6f b[1,`k'] _col(29) %10.6f (V[`k',`k'])^.5 local k=`k'+1 } if `fixedvar'==-1 { di in ye "Sigma" in ye _col(20) %9.6f b[1,`k'] _col(29) %10.6f (V[`k',`k'])^.5 di in ye "Variance" in ye _col(20) %9.6f b[1,`k']^2 _col(29) %10.6f 2*(V[`k',`k'])^.5*b[1,`k'] } else { di in ye "Sigma" in ye _col(20) %9.6f `fixedvar'^.5 _col(32) %10.6f "(fixed)" di in ye "Variance" in ye _col(20) %9.6f `fixedvar' _col(32) %10.6f "(fixed)" } di in gr "{hline 100}" di di } end