*! Version 2.12 1December2006 *! Jean-Benoit Hardouin ************************************************************************************************************ * Stata program : clv * Clustering of variables around latent variables * Version 2.12 : December 1st, 2006 /*savedendro option*/ * * Historic * Version 1 (2005-06-11): Jean-Benoit Hardouin * Version 1.1 (2005-07-07): Jean-Benoit Hardouin /*small bug in the consolidation process with cluster of only one variable*/ * Version 1.2 (2005-07-08): Jean-Benoit Hardouin /*Bug in the consolidation procedure when there is negative correlation*/ * Version 2 (2005-09-03): Jean-Benoit Hardouin /*Horizontal dendrograms (with Stata 9)*/ * Version 2.1 (2005-09-08): Jean-Benoit Hardouin /*More flexibility to abbreviate the names of the variables (with Stata 9)*/ * Version 2.1.1 (2005-09-08): Jean-Benoit Hardouin /*Integration of some requests of Ronan Conroy*/ * Version 2.1.2 (2005-09-08): Jean-Benoit Hardouin /*Possibility to give a title and an X/Y caption*/ * Version 2.2 (2005-09-11): Jean-Benoit Hardouin /*Kernel option*/ * Version 2.3 (2005-09-12): Jean-Benoit Hardouin /*Polychoric option*/ * Version 2.4 (2005-09-13): Jean-Benoit Hardouin /*v2 option*/ * Version 2.5 (2005-09-21): Jean-Benoit Hardouin /*corrections*/ * Version 2.6 (2005-10-02): Jean-Benoit Hardouin /*centroid method, biplot*/ * Version 2.7 (2005-10-06): Jean-Benoit Hardouin /*return, multiple graphs, polychoric+consolidation*/ * Version 2.8 (2005-10-06): Jean-Benoit Hardouin /*fweights*/ * Version 2.9 (2006-01-26): Jean-Benoit Hardouin /*save the latent variables*/ * Version 2.10 (2006-07-10): Jean-Benoit Hardouin /*2nd order relative variation of the T criterion*/ * Version 2.11 (2006-10-09): Jean-Benoit Hardouin /*Size of the text in the dendrogram*/ * Version 2.12 (2006-12-01): Jean-Benoit Hardouin /*savedendro option*/ * * Jean-benoit Hardouin, University of Nantes - Faculty of Pharmaceutical Sciences * Department of Biostatistics - France * jean-benoit.hardouin@univ-nantes.fr * * News about this program : http://anaqol.free.fr * FreeIRT Project : http://freeirt.free.fr * * Copyright 2005-2006 Jean-Benoit Hardouin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ************************************************************************************************************ program define clv,rclass version 9.0 syntax [varlist(default=none)] [if] [in] [fweight] [, CUTnumber(int 40) bar CONSolidation(int 0) noDENdro SAVEDendro(string) noSTANDardized deltaT HORizontal SHOWcount ABBrev(int 14) TITle(string) CAPtion(string) KERnel(numlist) METHod(string) noBIPlot ADDvar genlv(string) replace TEXTSize(string)] preserve tempfile clvfile tempvar id gen `id'=_n qui save `clvfile',replace local matsize=c(matsize) local none=0 if "`varlist'"=="" { capture confirm matrix r(vp) if _rc==0 { capture confirm matrix r(matclus) if _rc ==0 { local none=1 } } if `none'==0 { di in red "You cannot use the {hi:clv} command without {hi:varlist} if you have not already run {hi:clv}" error 198 exit } } tempname matclus vp indexes /*********TESTS**********/ if `none'==1 { matrix `vp'=r(vp) matrix `matclus'=r(matclus) local varlist `r(varlist)' tokenize `varlist' local nbitems=rowsof(`matclus') if "`method'"!="" { di in green "The {hi:method} option can not be modified without specification of the varlist. {hi:method} is omitted." } local method `r(method)' local kernel `r(kernel)' } if "`method'"=="" { local method classical } if ("`method'"=="polychoric"|"`method'"=="polychoricv2")&"`standardized'"!="" { di in green "Initial variables are used with the {hi:polychoric} methods" di in green "But the procedure is based on the matrix of the polychoric correlations" di } if "`method'"!="classical"&"`method'"!="v2"&"`method'"!="centroid"&"`method'"!="polychoric"&"`method'"!="polychoricv2" { di in red "The {hi:method} `method' is unknown" error 198 exit } tokenize `varlist' local nbitems : word count `varlist' marksample touse qui keep if `touse' local mat=max(`matsize',`=`nbitems'*2') qui set matsize `mat' if `nbitems'<3&`none'!=1 { di in red "You need at least 3 variables" error 198 exit } /*******DEFINES THE LABELS AND STANDARDIZED THE VARIABLES (IF NECESSARY)*******/ forvalues i=1/`nbitems'{ local label`i':variable label ``i'' if "`label`i''"=="" { local label`i' ``i'' } if "`method'"!="polychoric"&"`method'"!="polychoricv2" { qui su ``i'' [`weight'`exp'] local mean=r(mean) if "`standardized'"=="" { local sd=r(sd) } else { local sd=1 } qui replace ``i''=(``i''-`mean')/`sd' } } tempfile clvfiletmp qui save `clvfiletmp',replace qui su `1' [`weight'`exp'] local nbind=r(sum_w) local cons=`consolidation' /*COMPUTES THE TOTAL VARIANCE*/ if "`method'"!="polychoric"&"`method'"!="polychoricv2" { local totvar=0 forvalues i=1/`nbitems' { qui su ``i'' [`weight'`exp'] local totvar=`totvar'+`r(Var)' } } else { local totvar `nbitems' } local nbkerk=0 local nbkerg=0 /***** DEFINES THE KERNEL IF NECESSARY ********/ if "`kernel'"!="" { local nbkerg:word count `kernel' local fin0=0 forvalues i=1/`nbkerg' { local nbi`i':word `i' of `kernel' local nbkerk=`nbkerk'+`nbi`i'' local deb`i'=`fin`=`i'-1''+1 local fin`i'=`deb`i''+`nbi`i''-1 local list`i' forvalues j=`deb`i''/`fin`i'' { local list`i' `list`i'' ``j'' } } tempname kerclus matrix `kerclus'=J(`=`nbkerk'-`nbkerg'',3,0) local ligne=1 forvalues g=1/`nbkerg' { matrix `kerclus'[`ligne',1]=`nbitems'+`ligne' matrix `kerclus'[`ligne',2]=`deb`g'' matrix `kerclus'[`ligne',3]=`deb`g''+1 local clus`g'=`nbitems'+`ligne' local ligne=`ligne'+1 if `nbi`g''>2 { forvalues i=2/`=`nbi`g''-1' { matrix `kerclus'[`ligne',1]=`nbitems'+`ligne' matrix `kerclus'[`ligne',2]=`deb`g''+`i' matrix `kerclus'[`ligne',3]=`nbitems'+`ligne'-1 local clus`g'=`nbitems'+`ligne' local ligne=`ligne'+1 } } } } if `nbitems'<`nbkerk' { di in red "You cannot define more variables in the {hi:kernel} option than items in the {hi:varlist}" error 198 exit } /*******DISPLAY THE FIRST RESULTS *******/ di di in green "{hline 32}" di in green "TOTAL VARIANCE: " in ye %16.5f `totvar' di in green "NUMBER OF INDIVIDUALS: " in ye %9.0f `nbind' di in green "METHOD:" in ye _col(`=33-length("`method'")') "`=upper("`method'")'" di in green "{hline 32}" di if "`kernel'"!="" { forvalues i=1/`nbkerg' { di in green "The kernel numbered " in ye `clus`i'' in green " is composed of `nbi`i'' variables: " in ye "`list`i''" di } } else { local nbkerk=0 local nbkerg=0 } /******** CLASSIFICATION PROCEDURE*******/ tempname Ev if `none'!=1 { matrix `matclus'=J(`nbitems',`nbitems',0) matrix `vp'=J(`=2*`nbitems'-1',12,0) matrix `indexes'=J(`nbitems',8,0) forvalues i=1/`nbitems' { matrix `matclus'[`i',1]=`i' if "`method'"!="polychoric"&"`method'"!="polychoric" { qui su ``i'' [`weight'`exp'] matrix `vp'[`i',10]=r(Var) } else { matrix `vp'[`i',10]=1 } matrix `vp'[`i',1]=`i' matrix `vp'[`i',2]=`nbitems' matrix `vp'[`i',8]=`totvar' matrix `vp'[`i',9]=100 } matrix `vp'[`nbitems',5]=`nbitems' if "`method'"=="centroid" { local crit G di in green "{hline 101}" di in green _col(93) "2nd order" di in green _col(7) "Number of" _col(69) "`crit'" _col(71) "Explained" _col(82) "Relative" _col(94) "Relative" di in green "Step" _col(8) "clusters" _col(20) "Child 1" _col(33) "Child 2" _col(46) "Parent" _col(53) "`crit' value" _col(61) "variation" _col(72) "Variance" _col(81) "Variation" _col(93) "Variation" di in green "{hline 101}" } else { local crit T di in green "{hline 111}" if "`method'"=="v2"|"`method'"=="polychoricv2" { di in green _col(84) "Maximal" _col(103) "2nd order" } else { di in green _col(84) "Current" _col(103) "2nd order" } di in green _col(7) "Number of" _col(69) "`crit'" _col(71) "Explained" _col(85) "Second" _col(93) "Relative" _col(104) "Relative" di in green "Step" _col(8) "clusters" _col(20) "Child 1" _col(33) "Child 2" _col(46) "Parent" _col(53) "`crit' value" _col(61) "variation" _col(72) "Variance" _col(81) "Eigenvalue" _col(92) "Variation" _col(103) "Variation" di in green "{hline 111}" } tempname threshold matrix `threshold'=J(`nbitems',3,0) forvalues i=1/`=`nbitems'-1' { local clus=`nbitems'+`i' local minegenval=999999 local minegenval2=999999 forvalues k=1/`=`clus'-1' { local list`k' local numlist`k' forvalues j=1/`clus' { if (`matclus'[`j',`i']==`k') { local list`k' `list`k'' ``j'' local numlist`k' `numlist`k'' `j' } } } if `clus'>`nbitems'+`nbkerk'-`nbkerg' { if "`method'"=="centroid" { tempname centrj centrk diffjk } forvalues j=1/`clus' { local nblistj:word count `list`j'' forvalues k=`=`j'+1'/`clus' { local nblistk:word count `list`k'' if `nblistj'!=0&`nblistk'!=0 { if "`method'"=="centroid" { qui genscore `list`j'',score(`centrj') mean qui su `centrj' [`weight'`exp'] local Varj=r(Var) qui genscore `list`k'',score(`centrk') mean qui su `centrk' [`weight'`exp'] local Vark=r(Var) qui gen `diffjk'=`centrk'-`centrj' qui su `diffjk' [`weight'`exp'] local Varjk=r(Var) drop `centrj' `centrk' `diffjk' local ev=(`nblistj'*`nblistk')/(`nblistj'+`nblistk')*`Varjk' if `ev'<`minegenval' { local minegenval=`ev' local minj `j' local mink `k' local eigen=0 local eigen2=0 } } else { if "`method'"=="classical"|"`method'"=="v2" { qui pca `list`j'' `list`k'' [`weight'`exp'] ,cov matrix `Ev'=e(Ev) } else if "`method'"=="polychoric"|"`method'"=="polychoricv2" { qui polychoricpca `list`j'' `list`k'' [`weight'`exp'] matrix `Ev'=r(eigenvalues) } local lambda1=`Ev'[1,1] local lambda2=`Ev'[1,2] local ev=`vp'[`j',10]+`vp'[`k',10]-`lambda1' local ev2=max(`vp'[`j',11],`vp'[`k',11],`lambda2') if ("`method'"=="v2"|"`method'"=="polychoricv2")&`ev'<`minegenval' { local minegenval=`ev' local eigen=`lambda1' local minj `j' local mink `k' local eigen2=`lambda2' } else if ("`method'"=="classical"|"`method'"=="polychoric")&`ev2'<`minegenval2' { local minegenval=`ev' local minegenval2=`ev2' local eigen=`lambda1' local minj `j' local mink `k' local eigen2=`ev2' } } } } } } else { local ligne=`clus'-`nbitems' local j=`kerclus'[`ligne',2] local k=`kerclus'[`ligne',3] if "`method'"!="centroid" { if "`method'"=="classical"|"`method'"=="v2" { qui pca `list`j'' `list`k'' [`weight'`exp'],cov matrix `Ev'=e(Ev) } else if "`method'"=="polychoric"|"`method'"=="polychoricv2"{ qui polychoricpca `list`j'' `list`k'' [`weight'`exp'] matrix `Ev'=r(eigenvalues) } local lambda1=`Ev'[1,1] local lambda2=`Ev'[1,2] local ev=`vp'[`j',10]+`vp'[`k',10]-`lambda1' local minegenval=`ev' local eigen=`lambda1' local minj `j' local mink `k' local eigen2=`lambda2' } else if "`method'"=="centroid" { local nblistj:word count `list`j'' local nblistk:word count `list`k'' tempname v1 v2 v12 qui genscore `list`j'',score(`v1') mean qui genscore `list`k'',score(`v2') mean qui gen `v12'=`v1'-`v2' qui su `v12' [`weight'`exp'] local varj=r(Var) local minegenval=(`nblistj'*`nblistk')/(`nblistj'+`nblistk')*`varj' local minj `j' local mink `k' } } if `minj'<=`nbitems' { local nomj=abbrev("``minj''",14) } else { local nomj `minj' } if `mink'<=`nbitems' { local nomk=abbrev("``mink''",14) } else { local nomk `mink' } forvalues j=1/`nbitems' { matrix `matclus'[`j',`=`i'+1']=`matclus'[`j',`i'] } matrix `vp'[`clus',1]=`nbitems'+`i' /*PARENT*/ matrix `vp'[`clus',2]=`=`nbitems'-`i'' /*NUMBER OF CLUSTERS*/ matrix `vp'[`clus',3]=`minj' /*CHILD 1*/ matrix `vp'[`clus',4]=`mink' /*CHILD 2*/ matrix `vp'[`clus',6]=`minegenval' /*VARIATION OF THE T or G CRITERION*/ matrix `vp'[`clus',5]=`vp'[`=`clus'-1',5]-`vp'[`clus',6] /*T or G CRITERION*/ matrix `vp'[`clus',7]=(`vp'[`clus',6]-`vp'[`=`clus'-1',6])/`vp'[`=`clus'-1',6] /*RELATIVE VARIATION OF THE T OR G CRITERION*/ matrix `vp'[`clus',8]=`vp'[`=`clus'-1',8]-`minegenval' /*EXPLAINED VARIANCE*/ matrix `vp'[`clus',9]=`vp'[`clus',8]/`totvar'*100 /*% OF EXPLAINED VARIANCE*/ if "`method'"!="centroid" { matrix `vp'[`clus',10]=`eigen' /*FIRST EIGEN VALUE OF THE NEW CLUSTER*/ matrix `vp'[`clus',11]=`eigen2' /*SECOND EIGEN VALUE OF THE NEW CLUSTER*/ } if `vp'[`=`clus'-1',7]!=0 { matrix `vp'[`clus',12]=(`vp'[`clus',7]-`vp'[`=`clus'-1',7])/abs(`vp'[`=`clus'-1',7]) /*2ND ORDER RELATIVE VARIATION OF THE T or G CRITERION*/ } matrix `indexes'[`i',1]=`i' /*PARENT*/ matrix `indexes'[`i',2]=`nbitems'-`i' /*NUMBER OF CLUSTERS*/ matrix `indexes'[`i',3]=`minegenval' /*VARIATION OF THE T or G CRITERION*/ matrix `indexes'[`i',4]=`vp'[`clus',7] /*RELATIVE VARIATION OF THE T OR G CRITERION*/ matrix `indexes'[`i',5]=max(`eigen2',`indexes'[`=`i'-1',5]) /*MAXIMUM SECOND EIGENVALUE*/ matrix `indexes'[`i',7]=`vp'[`clus',12] /*2nd order RELATIVE VARIATION OF THE T OR G CRITERION*/ foreach j of numlist `numlist`minj'' `numlist`mink'' { matrix `matclus'[`j',`=`i'+1']=`clus' } local varlistgen local nbvarlistgen forvalues j=1/`=`nbitems'+`i'' { local varlist`j' forvalues k=1/`nbitems' { if `matclus'[`k',`=`i'+1']==`j' { local varlist`j' `varlist`j'' ``k'' } } local nbvarlist`j': word count `varlist`j'' local varlistgen `varlistgen' `varlist`j'' local nbvarlistgen `nbvarlistgen' `nbvarlist`j'' } local newlist foreach m in `nbvarlistgen' { if `m'!=0 { local newlist `newlist' `m' } } if "`kernel'"!=""&`i'==`=`nbkerk'-`nbkerg'+1' { local T=`vp'[`=`clus'-1',8] di _col(0) in ye "init" _col(12) %4.0f `=`nbitems'-`nbkerk'+`nbkerg'' _col(52) %8.4f `T' _col(62) %8.4f `=`totvar'-`T'' _col(72) %7.3f `=`T'/`totvar'*100' "%" } if `clus'>`nbitems'+`nbkerk'-`nbkerg' { matrix `threshold'[`=`nbitems'-`i'+1',3]=`minegenval' if `clus'==`nbitems'+`nbkerk'-`nbkerg'+1 { local relv local percent local relv2 } else { local relv=`indexes'[`i',4]*100 local percent % if `indexes'[`i',7]!=. { local relv2=`indexes'[`i',7]*100 } else { local relv2=0 } matrix `threshold'[`=`nbitems'-`i'+1',1]=`relv' matrix `threshold'[`=`nbitems'-`i'+1',2]=`relv2' } if "`method'"=="centroid" { di _col(0) in ye %4.0f `=`i'-`nbkerk'+`nbkerg'' _col(12) %4.0f `=`nbitems'-`i'' _col(20) "`nomj'" _col(33) "`nomk'" _col(45) %7.0f `=`i'+`nbitems'' _col(52) %8.4f `vp'[`clus',8] _col(62) %8.4f `minegenval' _col(72) %7.3f `vp'[`clus',9] "%" _col(83) _col(84) %5.2f `relv' "`percent'" _col(93) %8.2f `relv2' "`percent'" } else { di _col(0) in ye %4.0f `=`i'-`nbkerk'+`nbkerg'' _col(12) %4.0f `=`nbitems'-`i'' _col(20) "`nomj'" _col(33) "`nomk'" _col(45) %7.0f `=`i'+`nbitems'' _col(52) %8.4f `vp'[`clus',8] _col(62) %8.4f `minegenval' _col(72) %7.3f `vp'[`clus',9] "%" _col(83) %8.4f `vp'[`clus',11] _col(94) %6.2f `relv' "`percent'" _col(103) %8.2f `relv2' "`percent'" } } } matrix `indexes'[`nbitems',3]=`vp'[`=2*`nbitems'-1',5] /*RELATIVE VARIATION OF THE T OR G CRITERION*/ matrix `indexes'[`nbitems',7]=`indexes'[`nbitems',3]/`indexes'[`=`nbitems'-1',3] /*RELATIVE VARIATION OF THE T OR G CRITERION*/ local i=2*`nbitems'-1 matrix `threshold'[1,1]=`vp'[`i',5]/`vp'[`i',6]*100-100 matrix `threshold'[1,2]=(`threshold'[1,1]-`threshold'[2,1])/abs(`threshold'[2,1])*100 matrix `threshold'[1,3]=`vp'[`i',5] if "`method'"=="centroid" { di in ye _col(62) %8.4f `threshold'[1,3] _col(83) %6.2f `threshold'[1,1] "`percent'" _col(93) %8.2f `threshold'[1,2] "`percent'" } else { di in ye _col(62) %8.4f `threshold'[1,3] _col(94) %6.2f `threshold'[1,1] "`percent'" _col(103) %8.2f `threshold'[1,2] "`percent'" } local best=0 local maxbest=0 local best2=0 local maxbest2=0 local demipart=int(`nbitems'/2)+1 forvalues i=1/`demipart' { if `threshold'[`i',3]>`maxbest2' { if `threshold'[`i',3]>`maxbest' { local maxbest2=`maxbest' local best2=`best' local maxbest=`threshold'[`i',3] local best=`i' } else { local maxbest2=`threshold'[`i',3] local best2=`i' } } } di in green "{hline 111}" di di in green "{hline 60}" di in green "PROPOSED BEST PARTITIONS (AMONG THE `demipart' SMALLER PARTITIONS)" di in green "{hline 60}" di di in yellow _col(4) "Based on the variation of the T criterion: " _col(60) in gr "Partitions in " in ye `best' " or " `best2' in gr " clusters" return local bestvariation `best' `best2' local bestt=0 local bestt2=0 local var=0 local var2=0 forvalues i=1/`nbitems' { if `threshold'[`i',1]>`var2'&`i'<`demipart' { if `threshold'[`i',1]>`var' { local bestt2=`bestt' local var2=`var' local var=`threshold'[`i',1] local bestt=`i' } else { local var2=`threshold'[`i',1] local bestt2=`i' } } } di in yellow _col(4) "Based on the research of a threshold: " _col(60) in gr "Partitions in " in ye `bestt' " or " `bestt2' in gr " clusters" forvalues i=`=`nbitems'+1'/`=`nbitems'+`nbkerk'-`nbkerg'' { matrix `vp'[`i',6]=`totvar'-`T' matrix `vp'[`i',8]=`T' matrix `vp'[`i',9]=`T'/`nbitems'*100 } return local bestthresold `bestt' `bestt2' forvalues i=1/`nbitems' { if `threshold'[`i',2]>`var2'&`i'<`demipart' { if `threshold'[`i',2]>`var' { local bestt2=`bestt' local var2=`var' local var=`threshold'[`i',2] local bestt=`i' } else { local var2=`threshold'[`i',2] local bestt2=`i' } } } di in yellow _col(4) "Based on the research of a threshold (second order): " _col(60) in gr "Partitions in " in ye `bestt' " or " `bestt2' in gr " clusters" return local bestthresold2 `bestt' `bestt2' } /******BAR CHART *******/ if "`bar'"!="" { drop _all qui set obs `nbitems' qui svmat `indexes' ,names(v) qui gen id=`nbitems'-_n qui replace v7=. in 1 qui drop if id>`nbitems'-`nbkerk'+`nbkerg'-1 label variable id "Number of clusters" label variable v3 "T variation" qui su v3 if id!=0 local maxv3=ceil(r(max)*5)/5 local minv3=floor(r(min)*5)/5 label variable v4 "Relative T variation" label variable v7 "Relative T variation order 2" graph twoway (bar v3 id, name(bar,replace) vert yaxis(1))(line v4 id,yaxis(2))/*(line v6 id,yaxis(3))(line v5 id,yaxis(4))*/(line v7 id,yaxis(5)) if id!=0,ylabel(`minv3'(0.2)`maxv3') xlabel(1(1)`=`nbitems'-`nbkerk'+`nbkerg'-1') } /****** DENDROGRAM********/ drop _all qui set obs `nbitems' qui svmat `matclus' ,names(v) local listorder forvalues i=`nbitems'(-1)1 { local listorder `listorder' v`i' } qui gen id=_n qui sort `listorder' capture cluster delete clv,zap qui cluster complete v* ,name(clv) qui replace clv_id=_n qui replace clv_ord=id qui replace clv_hgt=. qui gen fait=0 qui gen clus=0 forvalues i=2/`nbitems' { local ligne=`nbitems'+`i'-1 if (`vp'[`ligne',3]<=`nbitems') { local first=`vp'[`ligne',3] gsort +fait -v`i' +clv_id } else { local first=`vp'[`ligne',4] gsort +fait -v`i' +clv_id } if "`deltaT'"!="" { qui replace clv_hgt=`vp'[`ligne',6] in 1 } else { qui replace clv_hgt=100-`vp'[`ligne',9] in 1 } qui replace fait=1 in 1 qui replace clus=`vp'[`ligne',1] in 1 } if "`dendro'"=="" { qui gen label="" forvalues i=1/`nbitems' { qui replace label=abbrev("`label`i''",`abbrev') if clv_id==`i' } sort clv_id if `nbitems'>`cutnumber' { local var "Groups of variables" local cut cutnumber(`cutnumber') /*labcutn*/ } else { local var "Variables" local cut label(label) } qui su clv_hgt local tmp=r(max) local max=floor(`tmp')+.5 if `tmp'>`max' { local max=`max'+.5 } local maxvar=`max'+5 if "`title'"=="" { local title "Clustering around Latent Variables (CLV)" } if "`caption'"!="" { local var "`caption'" } if "`deltaT'"!="" { local titleL "Variation of the T criterion" local yl "0(.5)`max'" } else { local titleL "% Unexplained Variance" local yl "0(25)`maxvar'" } if "`textsize'"=="" { local textsize: word `=min(int(`nbitems'/15)+1,5)' of medium medsmall small vsmall tiny } if "`horizontal'"!="" { cluster dendro clv, name (dendrogram,replace) hor ytitle("`var'") `showcount' xtitle("`titleL'") title("`title'",span) xlabel(`yl') ylabel(,angle(0) labsize(`textsize')) `cut' } else { cluster dendro clv, name(dendrogram,replace) xtitle("`var'") `showcount' ytitle("`titleL'") title("`title'",span) ylabel(`yl') xlabel(,labsize(`textsize')) `cut' } if "`savedendro'"!="" { graph save dendrogram `savedendro' } } /***** END DENDROGRAM*****/ /**** TEST ********/ if `cons'>`nbitems'-`nbkerk'+`nbkerg' { di in ye "The {hi:consolidation} is not possible for a number of clusters superior to the initial number of clusters" local cons=0 } /***** CONSOLIDATION PROCEDURE ********/ if `cons'!=0 { sort v`=`nbitems'-`cons'+1' gen cut`cons'=1 local g=1 forvalues i=2/`nbitems' { if v`=`nbitems'-`cons'+1'[`i']!=v`=`nbitems'-`cons'+1'[`=`i'-1'] { local g=`g'+1 } qui replace cut`cons'=`g' in `i' } sort id tempname group mkmat cut`cons',matrix(`group') use `clvfiletmp',replace local n=1 local env=1 while (`env'==1) { forvalues g=1/`cons' { local list`g' forvalues i=1/`nbitems' { if `group'[`i',1]==`g' { local list`g' `list`g'' ``i'' } } } di if `n'==1 { di in green "{hline 30}" di in green "PARTITION BEFORE CONSOLIDATION" di in green "{hline 30}" } di local col=13 local max=0 local critT=0 forvalues g=1/`cons' { di _col(`col') in green "CLUSTER " %2.0f `g' _c local col=`col'+12 local tmp`g':word count `list`g'' if `tmp`g''>`max' { local max `tmp`g'' } tempvar f1`g' if "`method'"=="centroid" { qui genscore `list`g'',score(`f1`g'') mean qui su `f1`g'' [`weight'`exp'] local var=r(Var) local critT=`critT'+`tmp`g''*`var' } else { if `tmp`g''>1 { if "`method'"=="classical"|"`method'"=="v2" { qui pca `list`g'' [`weight'`exp'] ,cov matrix `Ev'=e(Ev) local trace=e(trace) qui predict `f1`g'' } else if "`method'"=="polychoric"|"`method'"=="polychoric" { qui polychoricpca `list`g'' [`weight'`exp'] ,score(`f1`g'') nscore(1) matrix `Ev'=r(eigenvalues) local trace=0 forvalues m=1/`tmp`g''{ local trace =`trace'+`r(lambda`m')' } rename `f1`g''1 `f1`g'' } local lambda1=`Ev'[1,1] local explained`g'=`lambda1'/`trace' local critT=`critT'+`lambda1' } else { local explained`g'=1 qui gen `f1`g''=`list`g'' if "`standardized'"=="" { local critT=`critT'+1 } else { qui su [`weight'`exp'] local critT=`critT'+`r(Var)' } } } } di di _col(1) in green "ITEMS :" _c forvalues i=1/`max' { local col=15 forvalues g=1/`cons' { local tmpv:word `i' of `list`g'' local tmpv=abbrev("`tmpv'",8) di _col(`col') in ye %8s "`tmpv'" _c local col= `col'+12 } di } local col=16 di _col(1) in green "Expl. Var:" _c forvalues g=1/`cons' { di _col(`col') in ye %6.2f `=`explained`g''*100' in green "%" _c local col= `col'+12 } di di di in green "Variance Explained : " in ye %6.3f `=`critT'/`totvar'*100' in green "%" di in green "T criterion : " in ye %6.4f `critT' di di in green "{hline 21}" di in green "CONSOLIDATION: STEP `n'" di in green "{hline 21}" local n=`n'+1 local env=0 if "`method'"=="polychoric"|"`method'"=="polychoricv2" { local command polychoric } else { local command corr } forvalues i=1/`nbitems' { local env`i'=0 local gr=`group'[`i',1] qui `command' ``i'' `f1`gr'' [`weight'`exp'] local corr`i'=r(rho) local corrs`i'=r(rho) forvalues g=1/`cons' { qui `command' ``i'' `f1`g'' [`weight'`exp'] local tmpcorr=r(rho) if `g'!=`gr'&(((`corr`i'')<(`tmpcorr')&"`method'"=="centroid")|((`corr`i'')^2<(`tmpcorr')^2& "`method'"!="centroid")) { local env=1 local env`i'=1 matrix `group'[`i',1]=`g' local corr`i'=`tmpcorr' } } if `env`i''==1 { local g=`group'[`i',1] di in green "The variable " in ye "``i'' " in green "is assigned to the `g'th group" _c if "`method'"!="centroid" { di in green " (corr^2=" %6.4f in ye (`corr`i'')^2 in green " vs " in ye %6.4f (`corrs`i'')^2 in green ")" } else { di in green " (corr=" %6.4f in ye (`corr`i'') in green " vs " in ye %6.4f (`corrs`i'') in green ")" } } } if `env'==0 { local latent forvalues g=1/`cons' { label variable `f1`g'' "Latent variable `g'" if "`genlv'"!="" { if "`replace'"!=""{ capture drop `genlv'`g' } gen `genlv'`g'=`f1`g'' } local latent `latent' `f1`g'' return local cluster`g' `list`g'' } matrix `group'=`group'' matrix colnames `group'=`varlist' return matrix affect=`group' di in ye "Stability of the partition is achieved" if `cons'<=7 { di di in green "{hline 42}" di in green "CORRELATION MATRIX OF THE LATENT VARIABLES" di in green "{hline 42}" di di in green "{hline `=(`cons')*13+15'}" forvalues g=1/`cons' { di _col(`=13*(`g'-1)+23') in green "Latent" _c } di forvalues g=1/`cons' { di _col(`=13*(`g'-1)+19') in green "variable `g'" _c } di di in green "{hline `=(`cons')*13+15'}" forvalues g=1/`cons' { di in green "Latent variable `g'" _c forvalues h=1/`g' { local loc=13*`h'+10 qui corr `f1`g'' `f1`h'' [`weight'`exp'] local rho=r(rho) di _col(`loc') in ye %6.4f `rho' _c } di } di in green "{hline `=(`cons')*13+15'}" di } if `nbind'<=800&"`biplot'"==""&"`weight'"=="" { local max=max(`matsize',`nbind') set matsize `max' if "`addvar'"!="" { local add `varlist' } qui biplotvlab `latent' `add', name(biplot,replace) norow colopts(name(latent variables)) alpha(0) title(Biplot of the latent variables) labdes(size(vsmall) color(blue)) stretch(1) } else if `nbind'>800&"`biplot'"==""&"`weight'"==""{ di in green "There is more than 800 individuals, so the {hi:biplot} option is disabled" } else if "`weight'"!=""&&"`biplot'"==""{ di in green "The {hi:biplot} option is disabled because you use weights" } } forvalues g=1/`cons' { drop `f1`g'' } } } /***** END OF THE CONSOLIDATION PROCEDURE********/ set matsize `matsize' if "`genlv'"!="" { qui keep `id' `genlv'1-`genlv'`cons' tempfile lvfile qui sort `id' qui save `lvfile',replace } use `clvfile',replace if "`genlv'"!="" { qui sort `id' qui merge `id' using `lvfile' } qui drop `id' capture drop _merge capture cluster delete clv,zap matrix colnames `vp'="Parent" "Number of clusters" "Child 1" "Child 2" "T" "DeltaT" "deltaT" "Explained Variance" "Explained Variance (%)" "First eigenvalue" "Second Eigenvalue" "2nd order deltaT" return matrix vp=`vp' return matrix matclus=`matclus' return local varlist `varlist' return local method `method' return local kernel `kernel' restore,not end