You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

267 lines
9.1 KiB
R

library(TAM)
resali <- function(df=NULL,items=NULL,group=NULL,verbose=T) {
if (verbose) {
cat('-----------------------------------------------------------\n')
cat('COMPUTING INITIAL PCM\n')
cat('-----------------------------------------------------------\n')
}
nbitems <- length(items)
nbitems_o <- nbitems
items_n <- paste0('item',items)
resp <- df[,items_n]
grp <- df[,group]
pcm_initial <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
dat <- df
dat$score <- rowSums(dat[,items_n])
nqt <- ifelse(length(unique(quantile(dat$score,seq(0,1,0.2))))==6,5,length(unique(quantile(dat$score,seq(0,1,0.2))))-1)
dat$score_q5 <- cut(dat$score,unique(quantile(dat$score,seq(0,1,1/nqt))),labels=1:nqt,include.lowest=T)
res.anova <- rep(NA,nbitems)
pval <- rep(NA,nbitems)
fval <- rep(NA,nbitems)
for (i in items) {
dat[,paste0('res_',i)] <- IRT.residuals(pcm_initial)$stand_residuals[,i]
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
fval[i] <- res.anova[[i]][1,'F value']
}
if (verbose) {
cat('DONE\n')
cat('-----------------------------------------------------------\n')
}
res.items <- c()
res.uniform <- c()
k <- 1
while(any(pval<0.05/(nbitems_o*3))) {
k <- k+1
if (verbose) {
cat(paste('COMPUTING STEP',k,'\n'))
cat('-----------------------------------------------------------\n')
}
res.item <- gsub("[a-z]", "",colnames(resp)[which.max(fval)])
res.items <- c(res.items,res.item)
res.uni <- res.anova[[which.max(fval)]][3,"Pr(>F)"]>0.05
res.uniform <- c(res.uniform,res.uni)
items_n <- c(items_n[items_n!=paste0('item',res.item)],paste0("item",res.item,c("noTT","TT")))
dat[,paste0("item",res.item,'TT')] <- dat[dat$TT==1,paste0('item',res.item)]
dat[,paste0("item",res.item,'noTT')] <- dat[dat$TT==0,paste0('item',res.item)]
resp <- dat[,items_n]
grp <- dat[,group]
pcm_while <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
nbitems <- length(items_n)
res.anova <- rep(NA,nbitems)
pval <- rep(NA,nbitems)
fval <- rep(NA,nbitems)
for (i in 1:nbitems) {
dat[,paste0('res_',i)] <- IRT.residuals(pcm_while)$stand_residuals[,i]
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
fval[i] <- res.anova[[i]][1,'F value']
}
if (verbose) {
cat('DONE\n')
cat('-----------------------------------------------------------\n')
}
}
if (verbose) {
cat("DETECTED DIF ITEMS\n")
cat('-----------------------------------------------------------\n')
}
if (length(res.items>0)) {
results <- data.frame(dif.items=res.items,
uniform=1*res.uniform)
return(results)
}
else {
if (verbose) {
cat("No DIF was detected\n")
}
return(NULL)
}
}
resali_BF2 <- function(df=NULL,items=NULL,group=NULL,verbose=T) {
if (verbose) {
cat('-----------------------------------------------------------\n')
cat('COMPUTING INITIAL PCM\n')
cat('-----------------------------------------------------------\n')
}
nbitems <- length(items)
nbitems_o <- nbitems
items_n <- paste0('item',items)
resp <- df[,items_n]
grp <- df[,group]
pcm_initial <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
dat <- df
dat$score <- rowSums(dat[,items_n])
nqt <- ifelse(length(unique(quantile(dat$score,seq(0,1,0.2))))==6,5,length(unique(quantile(dat$score,seq(0,1,0.2))))-1)
dat$score_q5 <- cut(dat$score,unique(quantile(dat$score,seq(0,1,1/nqt))),labels=1:nqt,include.lowest=T)
res.anova <- rep(NA,nbitems)
pval <- rep(NA,nbitems)
fval <- rep(NA,nbitems)
for (i in items) {
dat[,paste0('res_',i)] <- rowMeans(predict(pcm_initial)$stand.resid[,,i])
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
fval[i] <- res.anova[[i]][1,'F value']
}
if (verbose) {
cat('DONE\n')
cat('-----------------------------------------------------------\n')
}
res.items <- c()
res.uniform <- c()
k <- 1
while(any(pval<0.05/(nbitems_o-k+1))) {
k <- k+1
if (verbose) {
cat(paste('COMPUTING STEP',k,'\n'))
cat('-----------------------------------------------------------\n')
}
res.item <- gsub("[a-z]", "",colnames(resp)[which.max(fval)])
res.items <- c(res.items,res.item)
res.uni <- res.anova[[which.max(fval)]][3,"Pr(>F)"]>0.05
res.uniform <- c(res.uniform,res.uni)
items_n <- c(items_n[items_n!=paste0('item',res.item)],paste0("item",res.item,c("noTT","TT")))
dat[,paste0("item",res.item,'TT')] <- dat[dat$TT==1,paste0('item',res.item)]
dat[,paste0("item",res.item,'noTT')] <- dat[dat$TT==0,paste0('item',res.item)]
resp <- dat[,items_n]
grp <- dat[,group]
pcm_while <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
nbitems <- length(items_n)
res.anova <- rep(NA,nbitems)
pval <- rep(NA,nbitems)
fval <- rep(NA,nbitems)
for (i in 1:nbitems) {
dat[,paste0('res_',i)] <- rowMeans(predict(pcm_while)$stand.resid[,,i])
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
fval[i] <- res.anova[[i]][1,'F value']
}
if (verbose) {
cat('DONE\n')
cat('-----------------------------------------------------------\n')
}
}
if (verbose) {
cat("DETECTED DIF ITEMS\n")
cat('-----------------------------------------------------------\n')
}
if (length(res.items>0)) {
results <- data.frame(dif.items=res.items,
uniform=1*res.uniform)
return(results)
}
else {
if (verbose) {
cat("No DIF was detected\n")
}
return(NULL)
}
}
resali_LRT <- function(df=NULL,items=NULL,group=NULL,verbose=T) {
if (verbose) {
cat('-----------------------------------------------------------\n')
cat('COMPUTING INITIAL PCM\n')
cat('-----------------------------------------------------------\n')
}
nbitems <- length(items)
nbitems_o <- nbitems
items_n <- paste0('item',items)
resp <- df[,items_n]
grp <- df[,group]
items_n_alt <- paste0(items_n,c("_TT","_noTT"))
for (i in items_n) {
df[df$TT==0,paste0(i,"_noTT")] <- df[df$TT==0,i]
df[df$TT==1,paste0(i,"_TT")] <- df[df$TT==1,i]
}
resp_alt <- df[,items_n_alt]
pcm_initial <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
pcm_alt <- TAM::tam.mml(resp=resp_alt,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
dat <- df
dat$score <- rowSums(dat[,items_n])
nqt <- ifelse(length(unique(quantile(dat$score,seq(0,1,0.2))))==6,5,length(unique(quantile(dat$score,seq(0,1,0.2))))-1)
dat$score_q5 <- cut(dat$score,unique(quantile(dat$score,seq(0,1,1/nqt))),labels=1:nqt,include.lowest=T)
res.anova <- rep(NA,nbitems)
pval <- rep(NA,nbitems)
fval <- rep(NA,nbitems)
for (i in items) {
dat[,paste0('res_',i)] <- rowMeans(predict(pcm_initial)$stand.resid[,,i])
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
fval[i] <- res.anova[[i]][1,'F value']
}
if (verbose) {
cat('DONE\n')
cat('-----------------------------------------------------------\n')
}
res.items <- c()
res.uniform <- c()
k <- 1
if (anova(pcm_initial,pcm_alt)$p[1]<0.05) {
while(any(pval<0.05/nbitems_o)) {
k <- k+1
if (verbose) {
cat(paste('COMPUTING STEP',k,'\n'))
cat('-----------------------------------------------------------\n')
}
res.item <- gsub("[a-z]", "",colnames(resp)[which.max(fval)])
res.items <- c(res.items,res.item)
res.uni <- res.anova[[which.max(fval)]][3,"Pr(>F)"]>0.05
res.uniform <- c(res.uniform,res.uni)
items_n <- c(items_n[items_n!=paste0('item',res.item)],paste0("item",res.item,c("noTT","TT")))
dat[,paste0("item",res.item,'TT')] <- dat[dat$TT==1,paste0('item',res.item)]
dat[,paste0("item",res.item,'noTT')] <- dat[dat$TT==0,paste0('item',res.item)]
resp <- dat[,items_n]
grp <- dat[,group]
pcm_while <- TAM::tam.mml(resp=resp,Y=grp,irtmodel = "PCM",est.variance = T,verbose=F)
nbitems <- length(items_n)
res.anova <- rep(NA,nbitems)
pval <- rep(NA,nbitems)
fval <- rep(NA,nbitems)
for (i in 1:nbitems) {
dat[,paste0('res_',i)] <- rowMeans(predict(pcm_while)$stand.resid[,,i])
res.anova[i] <- summary(aov(dat[,paste0('res_',i)]~TT*score_q5,data=dat))
pval[i] <- res.anova[[i]][1,"Pr(>F)"]
fval[i] <- res.anova[[i]][1,'F value']
}
if (verbose) {
cat('DONE\n')
cat('-----------------------------------------------------------\n')
}
}
if (verbose) {
cat("DETECTED DIF ITEMS\n")
cat('-----------------------------------------------------------\n')
}
if (length(res.items>0)) {
results <- data.frame(dif.items=res.items,
uniform=1*res.uniform)
return(results)
}
else {
if (verbose) {
cat("No DIF was detected\n")
}
return(NULL)
}
}
else {
if (verbose) {
cat("No DIF was detected\n")
}
return(NULL)
}
}