You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1792 lines
60 KiB
Plaintext

*! Version 5 2August2022
*! Jean-Benoit Hardouin, Myriam Blanchin
************************************************************************************************************
* Stata program : pcm
* Estimate the parameters of the Partial Credit Model
* Version 1 : December 17, 2007 [Jean-Benoit Hardouin]
* Version 2 : July 15, 2011 [Jean-Benoit Hardouin]
* Version 2.1 : October 18th, 2011 [Jean-Benoit Hardouin] : -fixedvar- option, new presentation
* Version 2.2 : October 23rd, 2013 [Jean-Benoit Hardouin] : correction of -fixedvar- option
* Version 2.3 : April 10th, 2014 [Jean-Benoit Hardouin] : correction of -fixedvar- option
* Version 2.3 : April 10th, 2014 [Jean-Benoit Hardouin] : correction of -fixedvar- option
* Version 3 : July 6th, 2019 [Jean-Benoit Hardouin] : New version using gsem
* Version 3.1 : July 9th, 2019 [Jean-Benoit Hardouin] : Small corrections
* Version 3.2 : July 17th, 2019 [Jean-Benoit Hardouin] : Small corrections
* Version 3.3 : July 25th, 2019 [Jean-Benoit Hardouin] : -pce- option
* Version 3.4 : August 23th, 2019 [Jean-Benoit Hardouin] : Correction of a bug
* Version 3.5 : August 29th, 2019 [Jean-Benoit Hardouin] : Correction of a bug with modamax``i''
* Version 4: September 13th, 2019 [Myriam Blanchin]: addition of longitudinal pcm
* Version 4.1: September 15th, 2019 [Jean-Benoit Hardouin]: correction of a small bug in the outputs
* Version 4.2: September 27th, 2019 [Jean-Benoit Hardouin] : EQUATING
* Version 4.3: November 8th, 2019 [Jean-Benoit Hardouin] : add a constant when difficulty parameters are fixed
* Version 5: August 2nd, 2022 [Jean-Benoit Hardouin] : New MAP graph, corrected estimation of the latent trait
* Version 5.1: July 8th, 2023 [Jean-Benoit Hardouin] : Correction of the MAP graph (histogram) and residuals graphs
*
*
* Jean-benoit Hardouin, Myriam Blanchin - University of Nantes - France
* INSERM UMR 1246-SPHERE "Methods in Patient Centered Outcomes and Health Research", Nantes University, University of Tours
* jean-benoit.hardouin@univ-nantes.fr, myriam.blanchin@univ-nantes.fr
*
* News about this program : http://www.anaqol.org
*
* Copyright 2007, 2011, 2013, 2014, 2019, 2022, 2023 Jean-Benoit Hardouin, Myriam Blanchin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
************************************************************************************************************/
program define pcm, rclass
syntax varlist(min=2 numeric) [iweight] [, CONTinuous(varlist) CATegorical(varlist) ITerate(int 100) TOLerance(real 0.01) model DIFFiculties(name) VARiance(real -1) rsm Graphs noGRAPHItems filesave dirsave(string) docx(string) extension(string) PCE WMLiterate(int 1) GENLT(string) GENINF(string) REPlace postpce visit(varname) id(varname) eqset1(varlist) eqset2(varlist) EQGraph minsize(int 30)]
preserve
/*************************************************************************************************************
QUELQUES TESTS
*************************************************************************************************************/
if `variance'!=-1&`variance'<=0 {
di in red "The -variance- option cannot be negative"
exit 198
}
if `variance'!=-1&"`visit'"!="" {
di in red "The -variance- and -visit- options cannot be used simultaneously."*
exit 198
}
if "`genlt'"!=""|"`geninf'"!="" {
capture confirm new variable `genlt' `genlt'_se `geninf' `genlt'_corr `genlt'_opt `genlt'_opt_se
if _rc!=0&"`replace'"=="" {
di in red "The variables `genlt', `genlt'_se, `genlt'_corr, `genlt'_opt, `genlt'_opt_se and/or `geninf' alreday exist. Please modify the -genlt- and/or -geninf- option"
exit 198
}
if _rc!=0&"`replace'"!="" {
qui capture drop `genlt'
qui capture drop `genlt'_se
qui capture drop `geninf'
qui capture drop `genlt'_corr
qui capture drop `genlt'_opt
qui capture drop `genlt'_opt_se
}
}
if ("`eqset1'"!=""&"`eqset2'"=="")|("`eqset1'"==""&"`eqset2'"!="") {
di in red "The two options -eqset1- and -eqset2- must be used simultaneously"
exit 198
}
if ("`eqset1'"!=""&"`graphs'"!="") {
di in red "The two options -eqset1- and -graph- cannot be used simultaneously"
exit 198
}
/*************************************************************************************************************
GESTION DES VARIABLES CONTINUES ET CATEGORIELLES
*************************************************************************************************************/
if "`visit'"!=""{
if "`id'"==""{
di in red "Option -visit- must be combined with option -id-. Please fill in the -id- option"
exit 198
}
qui levelsof `visit'
local levelsofv `r(levels)'
local nbvisits=r(r)
local timemin: word 1 of `levelsofv'
local timemax: word `nbvisits' of `levelsofv'
if `timemax'>5{
di as error "You must use a discrete time variable (-visit- option) with less than 5 measurement occasions"
error 198
}
if `timemin'!=1{
di as error "You must use a -visit- variable coded at 1 for the first visit"
error 198
}
qui reshape wide `varlist', i(`id') j(`visit')
local multivist=1
}
else {
local timemax=1
foreach i in `varlist' {
*rename `i' `i'1
}
local multivisit
}
qui count
local nbobs=r(N)
local timelist
forvalues t=1/`timemax'{
local timelist `timelist' T`t'
}
local modcont
local premodcont
local nbpar=0
local nbcont=0
local nbcat=0
if "`continuous'"!="" {
tokenize `continuous'
local nbcont : word count `continuous'
local continuous
forvalues i=1/`nbcont' {
local cont`i' ``i''
local continuous `continuous' ``i''
local modcont `modcont' ``i''
local ++nbpar
}
local premodcont (`modcont'->T1)
local modcont (`modcont'->`timelist')
}
local modcat
local premodcat
if "`categorical'"!="" {
tokenize `categorical'
local nbcat : word count `categorical'
local categorical
forvalues i=1/`nbcat' {
local cat`i' ``i''
local categorical `categorical' ``i''
local modcat `modcat' i.``i''
qui levelsof ``i''
local levelsof``i'' `r(levels)'
local nbpar=`nbpar'+`r(r)'-1
*di "categorical : ``i'' levels : `levelsof``i'''"
}
local premodcat (`modcat'->T1)
local modcat (`modcat'->`timelist')
}
if "`dirsave'"=="" {
local dirsave `c(pwd)'
}
/*************************************************************************************************************
GESTION DES ITEMS ET TESTS
*************************************************************************************************************/
tokenize `varlist'
local nbitems : word count `varlist'
marksample touse ,novarlist
*preserve
local modamax=1
local modamin=0
local pbmin
local nbdiff=0
local scoremax=0
forvalues i=1/`nbitems' {
local modamax`i'=1
local modamax``i''=1
if `timemax'>1 {
forvalues t=1/`timemax'{
*qui replace ``i'`t''=``i'`t''-`min'
qui su ``i''`t'
if `r(min)'!=`modamin' {
local modamin=r(min)
local pbmin `pbmin' ``i'`t''
}
if `r(max)'>`modamax' {
local modamax=r(max)
}
if `r(max)'>`modamax`i'' {
local modamax`i'=r(max)
}
}
}
else {
qui su ``i''
if `r(min)'!=`modamin' {
local modamin=r(min)
local pbmin `pbmin' ``i''
}
if `r(max)'>`modamax' {
local modamax=r(max)
}
if `r(max)'>`modamax`i'' {
local modamax`i'=r(max)
local modamax``i''=r(max)
}
}
*di "local scoremax=`scoremax'+`modamax`i''"
local scoremax=`scoremax'+`modamax`i''
if "`rsm'"=="" {
local nbdiff=`nbdiff'+`modamax`i''
}
}
if "`rsm'"!="" {
local nbdiff=`nbitems'+`modamax'-1
}
if `modamin'!=0 {
di as error "The minimal answer category of each item must be coded by 0. This is not the case for the following items: `pbmin' (`modamin') "
error 198
}
qui count
local nbind=r(N)
*set trace on
local code
local precode
if `timemax'>1 {
forvalues k=1/`modamax' {
forvalues t=1/`timemax'{
local code`k'
forvalues i=1/`nbitems' {
if `k'<=`modamax`i'' {
local code`k' `code`k'' `k'.``i''`t'
}
}
local code`k' (`code`k''<-T`t'@`k')
if `t'==1{
local precode `precode' `code`k''
}
local code `code' `code`k''
}
}
}
else {
forvalues k=1/`modamax' {
local code`k'
forvalues i=1/`nbitems' {
if `k'<=`modamax`i'' {
local code`k' `code`k'' `k'.``i''
}
}
local code`k' (`code`k''<-T1@`k')
local precode `precode' `code`k''
local code `code' `code`k''
}
}
/*************************************************************************************************************
OPTION PCE
*************************************************************************************************************/
if "`pce'"!=""&"`difficulties'"==""&"`visit'"=="" {
tempname sedelta b
qui raschpce `varlist'
local ll=r(ll)
matrix `sedelta'=r(sedelta)
matrix `sedelta'=`sedelta''
matrix `b'=r(b)
*matrix `b'=`b''
local difficulties `b'
*matrix list `b'
matrix loulou=`b'
return matrix diff_parm=`b'
`qui' pcm `varlist', diff(loulou) geninf(TInf_0) genlt(lt_0) /*postpce*/
*exit
}
/*************************************************************************************************************
RECUPERATION DES PARAMETRES DE DIFFICULTES ET DEFINITION DES CONTRAINTES
*************************************************************************************************************/
if "`difficulties'"!=""&"`rsm'"!="" {
di as error "You can not defined in the same time the difficulties and the rsm options"
error 198
}
local t=1
local constraints
local codemean
local codevar
local codecov
forvalues j=2/`timemax'{
forvalues i=1/`nbitems' {
forvalues k=1/`modamax`i'' {
qui constraint `t' [`k'.``i''`j']_cons=[`k'.``i''`multivisit']_cons
local constraints `constraints' `t'
local ++t
}
}
if "`continuous'"=="" & "`categorical'"==""{
local codemean `codemean' T`j'@m`j'
local codevar `codevar' T`j'@v`j'
forvalues l=1/`=`j'-1'{
local codecov `codecov' T`l'*T`j'@cov`l'`j'
}
}
else{
local codevar `codevar' e.T`j'@v`j'
forvalues l=1/`=`j'-1'{
local codecov `codecov' e.T`l'*e.T`j'@cov`l'`j'
}
}
}
if `timemax'>1{
if "`continuous'"=="" & "`categorical'"==""{
local codelg means(T1@0 `codemean') var(T1@v1 `codevar') cov(`codecov')
}
else{
local codelg var(e.T1@v1 `codevar') cov(`codecov')
}
}
else {
local constrvar
if `variance'>0 {
if "`continuous'"=="" & "`categorical'"==""{
local constrvar var(T1@`variance')
}
else{
*local constrvar var(e.T1@`variance')
}
}
}
local fixedmean
if "`difficulties'"!="" {
tempname beta
matrix `beta'=J(`nbitems',`modamax',.)
matrix list `difficulties'
forvalues i=1/`nbitems' {
forvalues k=1/`modamax`i'' {
if `difficulties'[`i',`k']==. {
di as error "The kth difficulty parameter of the item ``i'' is not correctly defined in the difficulties matrix"
error 198
}
else {
if `k'==1 {
matrix `beta'[`i',1]=-`difficulties'[`i',1]
}
else {
matrix `beta'[`i',`k']=`beta'[`i',`=`k'-1']-`difficulties'[`i',`k']
}
qui constraint `t' [`k'.``i''`multivisit']_cons=`beta'[`i',`k']
local constraints `constraints' `t'
local ++t
}
}
}
if "`continuous'"=="" & "`categorical'"=="" {
local fixedmean mean(T1)
}
else{
local fixedmean
}
}
/*************************************************************************************************************
DEFINITION DES CONTRAINTES POUR UN RSM
*************************************************************************************************************/
if "`rsm'"!="" {
local constraints
forvalues k=2/`modamax' {
forvalues i=2/`nbitems' {
qui constraint `t' [`=`k'-1'.``i''`multivisit']_cons-[`k'.``i''`multivisit']_cons+[1.``i''`multivisit']_cons=[`=`k'-1'.`1'1]_cons-[`k'.`1'1]_cons+[1.`1'1]_cons
local constraints `constraints' `t'
local ++t
}
}
}
/*************************************************************************************************************
MODELE
*************************************************************************************************************/
discard
*di "`qui' gsem `code' `modcont' `modcat' ,iterate(`iterate') tol(`tolerance') constraint(`constraints') latent(`timelist') `codelg' "
if "`model'"!="" {
local qui
}
else {
local qui qui
}
if `timemax'==1{
*di "`qui' gsem `code' `modcont' `modcat' ,iterate(`iterate') tol(`tolerance') constraint(`constraints') latent(`timelist') `constrvar' `fixedmean'"
`qui' gsem `code' `modcont' `modcat' ,iterate(`iterate') tol(`tolerance') constraint(`constraints') latent(`timelist') `constrvar' `fixedmean'
*qui gen un=1
*`qui' gsem `code' (i.group un->T) ,iterate(`iterate') tol(`tolerance') constraint(`constraints') latent(`timelist') `constrvar' `fixedmean'
}
else{
*di "`qui' gsem `precode' `premodcont' `premodcat',iterate(`iterate') tol(`tolerance') "
`qui' gsem `precode' `premodcont' `premodcat',iterate(`iterate') tol(`tolerance') constraint(`constraints')
matrix esti_B = e(b)
*di "`qui' gsem `code' `modcont' `modcat' ,iterate(`iterate') tol(`tolerance') constraint(`constraints') latent(`timelist') `codelg' from(esti_B,skip)"
`qui' gsem `code' `modcont' `modcat' ,iterate(`iterate') tol(`tolerance') constraint(`constraints') latent(`timelist') `codelg' from(esti_B,skip)
}
local ll=e(ll)
*set trace on
tempvar latent score group selatent latent2 miss
tempname groups
*capture qui predict mu, mu
*su mu
qui predict `latent'*,latent se(`selatent'*)
if "`genlt'"!="" {
if `timemax'==1 {
qui gen `genlt'=`latent'`i'
qui gen `genlt'_se=`selatent'`i'
}
forvalues t=2/`timemax' {
qui gen `genlt'`t'=`latent'`t'
qui gen `genlt'`t'_se=`selatent'`t'
}
}
set seed 123456
if `timemax'>1 {
forvalues t=1/`timemax'{
qui gen `latent2'`t'=`latent'`t'+invnorm(uniform())*`selatent'`t'
local listit
forvalues i=1/`nbitems' {
local listit `listit' ``i''`t'
}
qui genscore `listit',score(`score'`t')
qui gengroup `latent'`t',newvariable(`group'`t') continuous minsize(`minsize')
}
}
else {
qui gen `latent2'=`latent'+invnorm(uniform())*`selatent'
local listit
forvalues i=1/`nbitems' {
local listit `listit' ``i''
}
qui genscore `listit',score(`score')
qui gengroup `latent',newvariable(`group') continuous minsize(`minsize')
}
forvalues s=0/`scoremax' {
qui count if `score'==`s'
local effscore`s'=r(N)
}
/*time 1 only*/
qui levelsof `group'`multivisit'
local nbgroups=r(r)
matrix `groups'=J(`nbgroups',`=`nbitems'+6',.)
forvalues g=1/`nbgroups' {
matrix `groups'[`g',`=`nbitems'+3']=0
qui count if `group'`multivisit'==`g'
local effgroup`g'=r(N)
forvalues i=1/`nbitems' {
qui count if ``i''`multivisit'!=.&`group'`multivisit'==`g'
local n=r(N)
if `n'>0 {
qui su ``i''`multivisit' if `group'`multivisit'==`g'
matrix `groups'[`g',`i']=r(mean)
matrix `groups'[`g',`=`nbitems'+3']=`groups'[`g',`=`nbitems'+3']+`r(mean)'
}
else {
matrix `groups'[`g',`i']=.
matrix `groups'[`g',`=`nbitems'+3']=.
}
}
qui su `latent'`multivisit' if `group'`multivisit'==`g'
matrix `groups'[`g',`=`nbitems'+1']=r(mean)
qui count if `group'`multivisit'==`g'
matrix `groups'[`g',`=`nbitems'+2']=r(N)
qui su `score' if `group'`multivisit'==`g'&`score'!=.
matrix `groups'[`g',`=`nbitems'+4']=r(min)
matrix `groups'[`g',`=`nbitems'+5']=r(max)
}
/*number of non-missing on all time points*/
egen `miss'=rowmiss(`score'*)
qui count if `miss'==0
local nbobsssmd=r(N)
drop `miss'
di
di as text "Number of individuals:" %6.0f as result `nbobs'
di as text "Number of complete individuals:" %6.0f as result `nbobsssmd'
di as text "Number of items:" %6.0f as result `nbitems'
di as text "Marginal log-likelihood:" %12.4f as result `ll'
di
return scalar ll=`ll'
*set trace on
/*************************************************************************************************************
RECUPERATION DES ESTIMATIONS DES PARAMETRES DE DIFFICULTE
*************************************************************************************************************/
tempname diff diffmat vardiff diffmat2
*set trace on
qui matrix `diffmat'=J(`nbitems',`modamax',.)
qui matrix `diffmat2'=J(`nbitems',`modamax',.)
qui matrix `diff'=J(`nbdiff',6,.)
local rn
*qui matrix `vardiff'=J(`nbdiff',`nbdiff',.)
*matrix list `diff'
*set trace on
local t=1
forvalues i=1/`nbitems' {
qui matrix `diffmat'[`i',1]=-_b[1.``i''`multivisit':_cons]
qui matrix `diffmat2'[`i',1]=-_b[1.``i''`multivisit':_cons]
qui lincom -_b[1.``i''`multivisit':_cons]
qui matrix `diff'[`t',1]=`r(estimate)'
qui matrix `diff'[`t',2]=`r(se)'
qui matrix `diff'[`t',3]=`r(z)'
qui matrix `diff'[`t',4]=`r(p)'
qui matrix `diff'[`t',5]=`r(lb)'
qui matrix `diff'[`t',6]=`r(ub)'
local rn `rn' 1.``i''`multivisit'
local ++t
local sum _b[1.``i''`multivisit':_cons]
if "`rsm'"=="" {
forvalues k=2/`modamax`i'' {
local sum "_b[`k'.``i''`multivisit':_cons]-(`sum')"
*di "``i''`multivisit' `k' `sum'"
local sum2 "_b[`=`k'-1'.``i''`multivisit':_cons]-_b[`k'.``i''`multivisit':_cons]"
qui lincom (`sum2')
*set trace on
qui matrix `diffmat'[`i',`k']=`r(estimate)'
qui matrix `diffmat2'[`i',`k']=`diffmat2'[`i',`=`k'-1']+`diffmat'[`i',`k']
qui matrix `diff'[`t',1]=`r(estimate)'
qui matrix `diff'[`t',2]=`r(se)'
qui matrix `diff'[`t',3]=`r(z)'
qui matrix `diff'[`t',4]=`r(p)'
qui matrix `diff'[`t',5]=`r(lb)'
qui matrix `diff'[`t',6]=`r(ub)'
*qui matrix `vardiff'[`t',`t']=`r(se)'^2
*set trace off
local rn `rn' `k'.``i''`multivisit'
local ++t
}
}
}
if "`rsm'"!="" {
forvalues k=2/`modamax' {
qui lincom _b[`=`k'-1'.`1'`multivisit':_cons]-_b[`k'.`1'`multivisit':_cons]+_b[1.`1'`multivisit':_cons] /*``i'' instead of `i'?*/
qui matrix `diff'[`t',1]=`r(estimate)'
qui matrix `diff'[`t',2]=`r(se)'
qui matrix `diff'[`t',3]=`r(z)'
qui matrix `diff'[`t',4]=`r(p)'
qui matrix `diff'[`t',5]=`r(lb)'
qui matrix `diff'[`t',6]=`r(ub)'
forvalues i=1/`nbitems' {
qui matrix `diffmat'[`i',`k']=`diff'[`t',1]+`diffmat'[`i',1]
qui matrix `diffmat2'[`i',`k']=`diffmat'[`i',`k']+`diffmat2'[`i',`=`k'-1']
}
local rn `rn' tau`k'
local ++t
}
}
local cn Estimate S.e. z p "Lower bound" "Upper Bound"
matrix colnames `diff'=`cn'
matrix rownames `diff'=`rn'
*matrix list `diff'
*matrix list `diffmat'
*matrix list `diffmat2'
*matrix list `vardiff'
/*************************************************************************************************************
RECUPERATION DES ESTIMATIONS DES PARAMETRES POUR LES COVARIABLES, MOYENNES ET VARIANCES
*************************************************************************************************************/
tempname covariates
local nbcov=0
forvalues j=2/`timemax'{
local nbcov=`nbcov'+`j'-1
}
qui matrix `covariates'=J(`=`nbpar'+`timemax'+2*`nbcov'',6,.)
*set trace on
local t=1
forvalues j=1/`=`timemax'-1'{
forvalues k=`=`j'+1'/`timemax'{
if "`categorical'"=="" & "`continuous'"=="" {
if `j'==1{
qui lincom [/]mean(T`k')
}
else{
qui lincom [/]mean(T`k')-[/]mean(T`j')
}
qui matrix `covariates'[`t',1]=`r(estimate)'
qui matrix `covariates'[`t',2]=`r(se)'
qui matrix `covariates'[`t',3]=`r(z)'
qui matrix `covariates'[`t',4]=`r(p)'
qui matrix `covariates'[`t',5]=`r(lb)'
qui matrix `covariates'[`t',6]=`r(ub)'
local ++t
}
else{
if "`categorical'"!=""{
local first=0
foreach l in `levelsof`cat1'' {
if `first'==0 {
local ++first
}
else{
if `first'==1 {
qui lincom [T`k']`l'.`cat1'-[T`j']`l'.`cat1'
qui matrix `covariates'[`t',1]=`r(estimate)'
qui matrix `covariates'[`t',2]=`r(se)'
qui matrix `covariates'[`t',3]=`r(z)'
qui matrix `covariates'[`t',4]=`r(p)'
qui matrix `covariates'[`t',5]=`r(lb)'
qui matrix `covariates'[`t',6]=`r(ub)'
local ++t
local ++first
}
}
}
}
else{
qui lincom [T`k']`cont1'-[T`j']`cont1'
qui matrix `covariates'[`t',1]=`r(estimate)'
qui matrix `covariates'[`t',2]=`r(se)'
qui matrix `covariates'[`t',3]=`r(z)'
qui matrix `covariates'[`t',4]=`r(p)'
qui matrix `covariates'[`t',5]=`r(lb)'
qui matrix `covariates'[`t',6]=`r(ub)'
local ++t
}
}
}
}
forvalues j=1/`timemax'{
if "`continuous'"!=""|"`categorical'"!="" {
qui lincom _b[/var(e.T`j')]
}
else {
qui lincom _b[/var(T`j')]
}
qui matrix `covariates'[`t',1]=`r(estimate)'
qui matrix `covariates'[`t',2]=`r(se)'
qui matrix `covariates'[`t',3]=`r(z)'
qui matrix `covariates'[`t',4]=`r(p)'
qui matrix `covariates'[`t',5]=`r(lb)'
qui matrix `covariates'[`t',6]=`r(ub)'
local ++t
}
forvalues j=1/`=`timemax'-1'{
if "`continuous'"!=""|"`categorical'"!="" {
forvalues k=`=`j'+1'/`timemax'{
qui lincom _b[/cov(e.T`j',e.T`k')]
qui matrix `covariates'[`t',1]=`r(estimate)'
qui matrix `covariates'[`t',2]=`r(se)'
qui matrix `covariates'[`t',3]=`r(z)'
qui matrix `covariates'[`t',4]=`r(p)'
qui matrix `covariates'[`t',5]=`r(lb)'
qui matrix `covariates'[`t',6]=`r(ub)'
local ++t
}
}
else{
forvalues k=`=`j'+1'/`timemax'{
qui lincom _b[/cov(T`j',T`k')]
qui matrix `covariates'[`t',1]=`r(estimate)'
qui matrix `covariates'[`t',2]=`r(se)'
qui matrix `covariates'[`t',3]=`r(z)'
qui matrix `covariates'[`t',4]=`r(p)'
qui matrix `covariates'[`t',5]=`r(lb)'
qui matrix `covariates'[`t',6]=`r(ub)'
local ++t
}
}
}
forvalues i=1/ `nbcont' {
qui lincom `cont`i''
qui matrix `covariates'[`t',1]=`r(estimate)'
qui matrix `covariates'[`t',2]=`r(se)'
qui matrix `covariates'[`t',3]=`r(z)'
qui matrix `covariates'[`t',4]=`r(p)'
qui matrix `covariates'[`t',5]=`r(lb)'
qui matrix `covariates'[`t',6]=`r(ub)'
local ++t
}
forvalues i=1/ `nbcat' {
local first=0
foreach j in `levelsof`cat`i''' {
if `first'==0 {
local ++first
}
else {
qui lincom `j'.`cat`i''
qui matrix `covariates'[`t',1]=`r(estimate)'
qui matrix `covariates'[`t',2]=`r(se)'
qui matrix `covariates'[`t',3]=`r(z)'
qui matrix `covariates'[`t',4]=`r(p)'
qui matrix `covariates'[`t',5]=`r(lb)'
qui matrix `covariates'[`t',6]=`r(ub)'
local ++t
}
}
}
*matrix list `covariates'
/*************************************************************************************************************
OUTPUTS
*************************************************************************************************************/
if "`postpce'"=="" {
local t=1
local diffname
*set trace on
di "{hline 83}"
di as text _col(70) "<--95% IC -->"
di _col(70) "Lower" _col(78) "Upper"
di "Items" _col(22) "Threshold" _col(35) "Estimate" _col(47) "s.e." _col(58) "z" _col(66) "p" _col(69) " Bound" _col(78) "Bound"
di "{hline 83}"
*set trace on
forvalues i=1/`nbitems' {
*local l=1
forvalues j=1/`modamax`i'' {
if "`rsm'"==""|`j'==1 {
if `j'==1 {
di as text abbrev("``i''",19) _c
}
di as text _col(30) %5.2f "`j'" as result _col(38) %5.2f `diff'[`t',1] _col(46) %5.2f `diff'[`t',2] _col(54) %5.2f `diff'[`t',3] _col(62) %5.2f `diff'[`t',4] _col(70) %5.2f `diff'[`t',5] _col(78) %5.2f `diff'[`t',6]
local ++t
*local ++l
local diffname `diffname' `j'.``i''
}
}
}
if "`rsm'"!="" {
forvalues k=2/`modamax' {
di as text "tau`k'" as result _col(38) %5.2f `diff'[`t',1] _col(46) %5.2f `diff'[`t',2] _col(54) %5.2f `diff'[`t',3] _col(62) %5.2f `diff'[`t',4] _col(70) %5.2f `diff'[`t',5] _col(78) %5.2f `diff'[`t',6]
local diffname `diffname' tau`k'
local ++t
}
}
di as text "{hline 83}"
local t=1
local listmoy
local listvar
local listcov
forvalues j=1/`timemax'{
local listvar `listvar' Variance_T`j'
forvalues k=`=`j'+1'/`timemax'{
local listcov `listcov' Cov_T`j'_T`k'
}
forvalues k=`=`j'+1'/`timemax'{
local listmoy `listmoy' Mean_diff_T`j'_T`k'
}
}
local n: word count `listmoy' `listvar' `listcov' `continuous'
forvalues i=1/`n' {
local v: word `i' of `listmoy' `listvar' `listcov' `continuous'
di as text _col(1) %5.2f "`v'" as result _col(38) %5.2f `covariates'[`t',1] _col(46) %5.2f `covariates'[`t',2] _col(54) %5.2f `covariates'[`t',3] _col(62) %5.2f `covariates'[`t',4] _col(70) %5.2f `covariates'[`t',5] _col(78) %5.2f `covariates'[`t',6]
local ++t
}
local rn Variance `continuous'
local n: word count of `categorical'
local catname
forvalues i=1/`n' {
local v: word `i' of `categorical'
local first=1
local saute=1
foreach j in `levelsof`cat`i''' {
if `saute'==0 {
if `first'==1 {
di as text _col(1) abbrev("`v'",19) _c
}
di as text _col(30) %5.2f "`j'" as result _col(38) %5.2f `covariates'[`t',1] _col(46) %5.2f `covariates'[`t',2] _col(54) %5.2f `covariates'[`t',3] _col(62) %5.2f `covariates'[`t',4] _col(70) %5.2f `covariates'[`t',5] _col(78) %5.2f `covariates'[`t',6]
local ++first
local rn `rn' `j'.`n'
local ++t
local catname `catname' `j'.`v'
}
else {
local saute=0
}
}
*local ++t
}
di as text "{hline 83}"
if "`visit'"==""{
di
qui su `latent'
*qui local PSI=1-(`r(sd)')^2/((`covariates'[1,1])+(`r(sd)')^2)
*di as text "Variance of the estimated latent variable: " as result %4.2f `=(`r(sd)')^2'
tempvar se2latent
qui gen `se2latent'=(`selatent')^2
qui su `se2latent'
local resvar=r(mean)
di as text "Mean squared std error of the latent variable: " as result %4.2f `resvar'
di as text "Global variance of the latent variable: " as result %4.2f `=((`covariates'[1,1])+(`resvar'))'
local PSI=(`covariates'[1,1])/((`covariates'[1,1])+(`resvar'))
di as text "PSI: " as result %4.2f `PSI' _c
if "`continuous'"!=""|"`categorical'"!="" {
di as text " (without adjustment on covariates)"
}
else {
di
}
di
return scalar PSI=`PSI'
}
matrix colnames `covariates'=`cn'
matrix rownames `covariates'=`rn'
}
/*************************************************************************************************************
FIT TESTS
*************************************************************************************************************/
if "`visit'"==""{
tempname fit
qui matrix `fit'=J(`nbitems',4,.)
matrix colnames `fit'=OUTFIT INFIT "Standardized OUTFIT" "Standardized INFIT"
matrix rownames `fit'=`varlist'
*matrix list `fit'
tempvar Tcum TInf cum
qui gen `Tcum'=0
qui gen `TInf'=0
if "`postpce'"=="" {
di as text "{hline 90}"
di as text _col(60) "<--- Standardized --->"
di as text "Items" _col(34) "OUTFIT" _col(50) "INFIT" _col(64) "OUTFIT" _col(80) "INFIT"
di as text "{hline 90}"
di as text "Referenced values*" _col(29) "[" %4.2f `=1-6/sqrt(`nbobs')' ";" %4.2f `=1+6/sqrt(`nbobs')' "]" _col(44) "[" %4.2f `=1-2/sqrt(`nbobs')' ";" %4.2f `=1+2/sqrt(`nbobs')' "]" _col(60) "[-2.6;2.6]" _col(75) "[-2.6;2.6]"
di as text "Referenced values**" _col(29) "[0.75;1.30]" _col(44) "[0.75;1.30]" _col(60) "[-2.6;2.6]" _col(75) "[-2.6;2.6]"
di as text "{hline 90}"
}
*set trace on
local chi2=0
local chi2_old=0
forvalues g=1/`nbgroups' {
local chi2_g`g'=0
local chi2_old_g`g'=0
}
forvalues i=1/`nbitems' {
if "`rsm'"=="" {
local mm=`modamax`i''
}
else {
local mm `modamax'
}
tempvar cum_old``i'' c_old0_``i'' Inf_old``i'' y_old``i'' y2_old``i''
tempvar cum``i'' c0_``i'' Inf``i'' C``i'' C2``i'' C3``i'' y``i'' y2``i'' z``i'' z2``i'' i``i''
local d=1
local d_old=1
qui gen `cum``i'''=0
qui gen `cum_old``i'''=0
forvalues k=1/`mm' {
local d `d'+exp(`k'*`latent2'-`diffmat2'[`i',`k'])
local d_old `d_old'+exp(`k'*`latent'-`diffmat2'[`i',`k'])
}
qui gen `c0_``i'''=1/(`d')
qui gen `c_old0_``i'''=1/(`d_old')
forvalues k=1/`mm' {
tempvar c`k'_``i'' c_old`k'_``i''
qui gen `c`k'_``i'''=exp(`k'*`latent2'-`diffmat2'[`i',`k'])/(`d')
qui gen `c_old`k'_``i'''=exp(`k'*`latent'-`diffmat2'[`i',`k'])/(`d')
qui replace `cum``i'''=`cum``i'''+`c`k'_``i'''*`k'
qui replace `cum_old``i'''=`cum_old``i'''+`c_old`k'_``i'''*`k'
}
qui gen `Inf``i'''=0
qui gen `Inf_old``i'''=0
qui gen `C``i'''=0
forvalues k=0/`mm' {
qui replace `Inf``i'''=`Inf``i'''+(`k'-`cum``i''')^2*`c`k'_``i'''
qui replace `Inf_old``i'''=`Inf_old``i'''+(`k'-`cum_old``i''')^2*`c_old`k'_``i'''
qui replace `C``i'''=`C``i'''+(`k'-`cum``i''')^4*`c`k'_``i'''
}
qui count if ``i''!=.
local n``i''=r(N)
qui gen `C2``i'''=`C``i'''/((`Inf``i''')^2)
qui su `C2``i'''
local q2o``i''=(`r(mean)'-1)/((`n``i'''))
qui gen `C3``i'''=`C``i'''-(`Inf``i''')^2
qui su `C3``i'''
local n=r(sum)
qui su `Inf``i'''
local d=r(sum)
local q2i``i''=`n'/((`d')^2)
//di "``i'' qo = `=sqrt(`q2o``i''')' qi = `=sqrt(`q2i``i''')'"
qui replace `Tcum'=`Tcum'+`cum``i'''
qui replace `TInf'=`TInf'+`Inf``i'''
qui gen `y``i'''=``i''-`cum``i'''
qui gen `y_old``i'''=``i''-`cum_old``i'''
qui gen `y2``i'''=(`y``i''')^2
qui gen `y2_old``i'''=(`y_old``i''')^2
qui gen `z``i'''=(`y``i'''/sqrt(`Inf``i'''))
local chi2_``i''=0
local chi2_old_``i''=0
forvalues g=1/`nbgroups' {
qui su `y2``i''' if `group'==`g'
local n=r(sum)
qui su ``i'' if `group'==`g'
local n1=r(sum)
qui su `cum``i''' if `group'==`g'
local n2=r(sum)
qui su `Inf``i''' if `group'==`g'
local d=r(sum)
*qui count if `group'==`g'
*local eff=r(N)
*di "chi2_`g'_``i''=`chi2'+/*`eff'**/(`n1'-`n2')^2/(`d')"
local chi2=`chi2'+/*`eff'**/(`n1'-`n2')^2/(`d')
local chi2_``i''=`chi2_``i'''+/*`eff'**/(`n1'-`n2')^2/(`d')
local chi2_g`g'=`chi2_g`g''+/*`eff'**/(`n1'-`n2')^2/(`d')
qui su `y2_old``i''' if `group'==`g'
local n_old=r(sum)
qui su ``i'' if `group'==`g'
local n1_old=r(sum)
qui su `cum_old``i''' if `group'==`g'
local n2_old=r(sum)
qui su `Inf_old``i''' if `group'==`g'
local d_old=r(sum)
local chi2_old=`chi2_old'+(`n1_old'-`n2_old')^2/(`d_old')
local chi2_old_``i''=`chi2_old_``i'''+(`n_old')/(`d_old')
local chi2_old_g`g'=`chi2_old_g`g''+(`n_old')/(`d_old')
}
*di "Item ``i'' Chi2``i''=`chi2_``i''' et chi2=`chi2' Chi2_old=`chi2_old_``i''' et chi2_old=`chi2_old' "
*su `z``i'''
label variable `z``i''' "Standardized residuals associated to ``i''"
label variable `latent' "Latent trait"
*set trace on
if "`graphs'"!=""&"`graphitems'"=="" {
if "`filesave'"!="" {
local fs saving("`dirsave'//residuals_``i''",replace)
}
tempvar id``i''
qui gen `id``i'''=_n if abs(`z``i''')>2*sqrt(`covariates'[1,1])
qui tostring `id``i''',replace
qui replace `id``i'''="" if `id``i'''=="."
qui su `z``i'''
local min=r(min)
local max=r(max)
local min=floor(min(`min',`=-2*sqrt(`covariates'[1,1])'))
local max=ceil(max(`max',`=2*sqrt(`covariates'[1,1])'))
qui graph twoway scatter `z``i''' `latent', yscale(range(`min'(1)`max')) yline(`=-2*sqrt(`covariates'[1,1])' `=2*sqrt(`covariates'[1,1])',lcolor(blue)) mlabel(`id``i''') name(residuals``i'',replace) title("Standardized residuals associated to ``i''") `fs'
}
*set trace off
qui gen `z2``i'''=(`z``i''')^2
qui su `z2``i'''
local OUTFIT``i''=`r(mean)'
qui matrix `fit'[`i',1]=`OUTFIT``i'''
local OUTFITs``i''=((`r(mean)')^(1/3)-1)*(3/sqrt(`q2o``i'''))+sqrt(`q2o``i''')/3
qui matrix `fit'[`i',3]=`OUTFITs``i'''
qui su `Inf``i''' if ``i''!=.
local sumw``i''=r(sum)
qui gen `i``i'''=`Inf``i'''*`z2``i'''
qui su `i``i''' if ``i''!=.
local INFIT``i'' = `=`r(sum)'/`sumw``i''''
qui matrix `fit'[`i',2]=`INFIT``i'''
local INFITs``i''=(`=`r(sum)'/`sumw``i''''^(1/3)-1)*(3/sqrt(`q2i``i'''))+sqrt(`q2i``i''')/3
qui matrix `fit'[`i',4]=`INFITs``i'''
if "`postpce'"=="" {
di "``i''" _col(35) %5.3f `OUTFIT``i''' _col(50) %5.3f `INFIT``i''' _col(64) %6.3f `OUTFITs``i''' _col(79) %6.3f `INFITs``i'''
}
}
if "`postpce'"=="" {
di as text "{hline 90}"
di as text "*: As suggested by Wright (Smith, 1998)
di as text "**: As suggested by Bond and Fox (2007)
}
if "`geninf'"!="" {
gen `geninf'=`TInf'
}
}
*set trace off
/*************************************************************************************************************
ESTIMATION OF THE WEIGHTED ML ESTIMATORS
**************************************************************************************************************/
*set trace on
*di "estimation `wmliterate'"
if "`postpce'"!="" {
local conv=10
local it=`wmliterate'
di "Iteration : `it'"
while(`conv'>=1) {
di "Itération `it' : conv=`conv'"
tempvar sinf
qui gen `sinf'=sqrt(TInf_`=`it'-1')
`qui' pcm `varlist' [iweight=`sinf'],diff(loulou) wmliterate(`it') geninf(TInf_`it') genlt(lt_`it')
tempvar ecart_`it'
qui gen `ecart_`it''=abs(lt_`it'-lt_`=`it'-1')
qui su `ecart_`it''
local conv =r(mean)
local ++it
}
exit
}
/*************************************************************************************************************
ESTIMATION OF THE CORRECTED ML ESTIMATORS
**************************************************************************************************************/
*set trace on
tempfile savefile
qui save `savefile'
qui drop _all
qui set obs 2000
qui gen u=(_n-1000)/200*`=sqrt(`covariates'[1,1])'
qui gen Tcum=0
qui gen TInf=0
forvalues i=1/`nbitems' {
local d=1
qui gen cum``i''=0
if "`rsm'"=="" {
local mm=`modamax`i''
}
else {
local mm `modamax'
}
forvalues k=1/`mm' {
local d `d'+exp(`k'*u-`diffmat2'[`i',`k'])
}
qui gen c0_``i''=1/(`d')
forvalues k=1/`mm' {
qui gen c`k'_``i''=exp(`k'*u-`diffmat2'[`i',`k'])/(`d')
qui replace cum``i''=cum``i''+c`k'_``i''*`k'
}
qui gen Inf``i''=0
forvalues k=1/`mm' {
qui replace Inf``i''=Inf``i''+(`k'-cum``i'')^2*c`k'_``i''
}
qui replace Tcum=Tcum+cum``i''
qui replace TInf=TInf+Inf``i''
local scoremax=0
forvalues i=1/`nbitems' {
local scoremax=`scoremax'+`modamax`i''
}
qui gen ecart=.
forvalues i=0/`scoremax' {
if `i'==0 {
local j=0.25
}
else if `i'==`scoremax' {
local j=`scoremax'-0.25
}
else {
local j=`i'
}
qui replace ecart=abs(Tcum-`j')
qui su ecart
local tmp=r(min)
qui su u if round(ecart, 0.01)==round(`tmp',0.01)
local estlt`i'=`r(mean)'
}
qui drop ecart
}
qui use `savefile', clear
/*************************************************************************************************************
RESULTS BY GROUP
*************************************************************************************************************/
if "`visit'"==""{
*set trace on
tempname matscorelt
qui matrix `matscorelt'=J(`=`nbitems'*`modamax'+1',3,.)
di
di as text "{hline 71}"
di _col(32) "Latent Trait" _col(50) "Expected" _col(63) "Corrected"
di "Group" _col(10) "Score" _col(20) "Freq" _col(32) "Mean" _col(42) "s.e." _col(53) "Score" _col(60) "latent trait"
di as text "{hline 71}"
forvalues g=1/`nbgroups' {
local sumuc=0
local sumc=0
qui count if `group'`multivisit'==`g'
local eff`g'=r(N)
qui count if `group'`multivisit'==`g'&`score'`multivisit'!=.
local effcompleted`g'=r(N)
qui count if `score'`multivisit'!=.&`group'`multivisit'==`g'
local n=r(N)
di as text "`g' (n=" as result `eff`g'' as text ")" _c
if `n'>0 {
qui su `score'`multivisit' if `group'`multivisit'==`g'
local scoremin`g'=`r(min)'
local scoremax`g'=`r(max)'
forvalues s=`scoremin`g''/`scoremax`g'' {
qui count if `group'`multivisit'==`g'&`score'`multivisit'==`s'
local eff=r(N)
if `eff'!=0 {
qui su `latent' if `group'`multivisit'==`g'&`score'`multivisit'==`s'
local mean=r(mean)
*di "local sumc=`sumc'+(`eff')*(`estlt`s'')"
*di "local sumuc=`sumuc'+(`eff')*(`mean')"
local sumuc=(`sumuc'+((`eff')*(`mean')))
local sumc=(`sumc'+((`eff')*(`estlt`s'')))
}
qui su `selatent' if `group'`multivisit'==`g'&`score'`multivisit'==`s'
local se=r(mean)
qui su `Tcum' if `group'`multivisit'==`g'&`score'`multivisit'==`s'
local exp=r(mean)
if `eff'>0 {
di as text _col(10) %5.0f `s' as result _col(20) %4.0f `eff' _col(30) %6.3f `mean' _col(40) %6.3f `se' _col(53) %5.2f `exp' _col(66) %6.3f `estlt`s''
}
qui matrix `matscorelt'[`=`s'+1',1]=`s'
qui matrix `matscorelt'[`=`s'+1',2]=`mean'
qui matrix `matscorelt'[`=`s'+1',3]=`se'
}
}
qui count if `group'`multivisit'==`g'&`score'`multivisit'==.
local eff=r(N)
qui su `latent' if `group'`multivisit'==`g'&`score'`multivisit'==.
local mean=r(mean)
local sumuc=(`sumuc'+((`eff')*(`mean')))
qui su `selatent' if `group'`multivisit'==`g'&`score'`multivisit'==.
local se=r(mean)
qui su `Tcum' if `group'`multivisit'==`g'&`score'`multivisit'==.
local exp=r(mean)
if `eff'>0 {
di as text _col(10) " ." as result _col(20) %4.0f `eff' _col(30) %6.3f `mean' _col(40) %6.3f `se' _col(53) %5.2f `exp'
}
*di "local lt`g'=`sumuc'/`eff`g''"
*di "local clt`g'=`sumc'/`eff`g''"
local lt`g'=(`sumuc')/(`eff`g'')
local clt`g'=(`sumc')/(`effcompleted`g'')
matrix `groups'[`g',`=`nbitems'+6']=`clt`g''
*di "group `g' est=`lt`g'' corrected est=`clt`g''"
di as text " " "{dup 62:-}"
di as text _col(10) "`scoremin`g''/`scoremax`g''" as result _col(20) %4.0f `eff`g'' _col(30) %6.3f `lt`g'' _col(66) %6.3f `clt`g''
di as text "{hline 71}"
}
*matrix list `matscorelt'
}
/*************************************************************************************************************
Categories/Items/Test Characteristics Curves and Information graphs
*************************************************************************************************************/
*set trace on
if "`visit'"==""{
if "`graphs'"!=""|"`graphs'"=="" {
tempfile savefile
qui save `savefile'
*qui clear
qui drop _all
local pas=1000*round(`=sqrt(`covariates'[1,1])',0.001)
qui set obs `pas'
qui gen u=round((_n-`pas'/2)/(`pas'/10)*`=sqrt(`covariates'[1,1])',0.01)
*list u
qui gen Tcum=0
qui gen TInf=0
qui gen ecartcum=.
forvalues i=1/`nbitems' {
local scatteri`i'
local scatteric`i'
forvalues g=1/`nbgroups' {
local x=`groups'[`g',`=`nbitems'+1']
local xc=`groups'[`g',`=`nbitems'+6']
local y=`groups'[`g',`i']
local s1=`groups'[`g',`=`nbitems'+2']
local seuil=30
local s vtiny
*set trace on
foreach lab in /*tiny*/ vsmall small medsmall medium medlarge large vlarge huge vhuge /*ehuge*/ {
if `s1'>`seuil' {
local s `lab'
}
local seuil=`seuil'+10
}
local scatteri`i' `scatteri`i'' || scatteri `y' `x' , mcolor(black) msize(`s') legend(off)
local scatteric`i' `scatteric`i'' || scatteri `y' `xc' , mcolor(black) msize(`s') legend(off)
*set trace off
}
local d=1
qui gen cum``i''=0
*set trace on
if "`rsm'"=="" {
local mm=`modamax`i''
}
else {
local mm `modamax'
}
forvalues k=1/`mm' {
local d `d'+exp(`k'*u-`diffmat2'[`i',`k'])
}
qui gen c0_``i''=1/(`d')
label variable c0_``i'' "Pr(``i''=0)"
forvalues k=1/`mm' {
qui gen c`k'_``i''=exp(`k'*u-`diffmat2'[`i',`k'])/(`d')
qui replace cum``i''=cum``i''+c`k'_``i''*`k'
label variable c`k'_``i'' "Pr(``i''=`k')"
}
forvalues k=0/`mm' {
if `k'==0 {
local l=0.25
}
else if `k'==`mm' {
local l=`k'-0.25
}
else {
local l=`k'
}
qui replace ecartcum=abs(cum``i''-`l')
qui su ecartcum
qui su u if round(ecartcum,0.01)==round(`r(min)',0.01)
local bestest``i''_`k'=r(mean)
*di "item ``i'' cat `k' : est=`bestest``i''_`k''"
}
qui gen Inf``i''=0
forvalues k=0/`mm' {
qui replace Inf``i''=Inf``i''+(`k'-cum``i'')^2*c`k'_``i''
}
if "`graphitems'"=="" {
if "`filesave'"!="" {
local fsc saving("`dirsave'//CCC_``i''",replace)
local fsi saving("`dirsave'//ICC_``i''",replace)
}
if "`graphs'"!="" {
qui graph twoway line c*_``i'' u , name(CCC``i'', replace) title(Categories Characteristic Curve (CCC) of ``i'') ytitle("Probability") xtitle("Latent trait") `fsc'
qui graph twoway line cum``i'' u, name(ICC``i'',replace) title("Item Characteristic Curve (ICC) of ``i''") ytitle("Score to the item") xtitle("Latent trait") `scatteri`i'' `fsi'
qui graph twoway line cum``i'' u, name(ICCc``i'',replace) title("Item Characteristic Curve (ICC) of ``i''") ytitle("Score to the item") xtitle("Corrected latent trait") `scatteric`i'' `fsi'
}
}
qui replace Tcum=Tcum+cum``i''
*tab Tcum
qui replace TInf=TInf+Inf``i''
label variable Inf``i'' "``i''"
}
local scoremax=0
forvalues i=1/`nbitems' {
local scoremax=`scoremax'+`modamax`i''
}
qui gen ecart=.
forvalues i=0/`scoremax' {
if `i'==0 {
local j=0.25
}
else if `i'==`scoremax' {
local j=`scoremax'-0.25
}
else {
local j=`i'
}
qui replace ecart=abs(Tcum-`j')
qui su ecart
local tmp=r(min)
qui su u if round(ecart, 0.01)==round(`tmp',0.01)
local estlt`i'=`r(mean)'
*di "score `i' : `r(mean)'"
}
if "`filesave'"!="" {
local fst saving("`dirsave'//TCC",replace)
local fsteo saving("`dirsave'//TCCeo",replace)
local fsi saving("`dirsave'//ICC",replace)
local fsti saving("`dirsave'//TIC",replace)
local fsm saving("`dirsave'//map",replace)
}
if "`graphs'"!="" {
*qui save "C:\temp\info\info",replace
qui graph twoway line Tcum u, name(TCC,replace) title("Test Characteristic Curve (TCC)") ytitle("Score to the test") xtitle("Latent trait") `fst'
qui graph twoway line Inf* u, name(IIC,replace) title("Item Information Curves") ytitle("Information") xtitle("Latent trait") `fsi'
qui graph twoway line TInf u, name(TIC,replace) title("Test Information Curve") ytitle("Information") xtitle("Latent trait") `fsti'
}
local scatteri
local scatteric
forvalues g=1/`nbgroups' {
local x=`groups'[`g',`=`nbitems'+1']
local xc=`groups'[`g',`=`nbitems'+6']
local y=`groups'[`g',`=`nbitems'+3']
local s1=`groups'[`g',`=`nbitems'+2']
local seuil=30
local s vtiny
*set trace on
foreach lab in tiny vsmall small medsmall medium medlarge large vlarge huge vhuge /*ehuge*/ {
if `s1'>`seuil' {
local s `lab'
}
local seuil=`seuil'+10
}
local scatteri `scatteri' || scatteri `y' `x' , mcolor(black) msize(`s') legend(off)
local scatteric `scatteric' || scatteri `y' `xc' , mcolor(black) msize(`s') legend(off)
}
if "`graphs'"!="" {
qui graph twoway line Tcum u , name(TCCeo,replace) title("Test Characteristic Curve (TCC)") ytitle("Score to the test") xtitle("Latent trait") `scatteri' `fsteo'
qui graph twoway line Tcum u , name(TCCceo,replace) title("Test Characteristic Curve (TCC)") ytitle("Score to the test") xtitle("Corrrected latent trait") `scatteric' `fsteo'
}
}
/*************************************************************************************************************
MAP
*************************************************************************************************************/
*set trace on
if "`graphs'"!="" {
gen eff=0
local effmax=0
*gen uround=round(u,0.01)
*list uround
forvalues g=1/`nbgroups' {
local eff=`groups'[`g',`=`nbitems'+2']
if `groups'[`g',`=`nbitems'+2']>`effmax' {
local effmax=`groups'[`g',`=`nbitems'+2']
}
local lat=round(`groups'[`g',`=`nbitems'+1'],0.01)
*di "replace eff=`eff' if round(u,0.01)==`lat'"
qui replace eff=`eff' if round(u,0.01)==`lat'
}
gen density=normalden(u)*sqrt(`covariates'[1,1])
label variable eff "Frequencies"
label variable u "Latent trait"
label variable TInf "Information curve"
label variable density "Density function of the latent trait"
local scatteri
local scatterj
local color
qui su u if eff!=0
*set trace on
*set tracedepth 1
local floor=floor(`r(min)')
local ceil=ceil(`r(max)')
local sep
local ylbl
forvalues i=1/`nbitems' {
local color`i':word `i' of `color'
local unit=round(`effmax'/`nbitems',1)
local y=-`i'*`unit'
loca staritem
local legend `" 2 "1" "'
forvalues l=1/`modamax' {
if `l'>=2 {
local legend `" `legend' `=2*`l'' "`l'" "'
}
local x=`diffmat'[`i',`l']
local scatteri `scatteri' || scatteri `y' `x' "`l'" ,mcolor(black) mlabcolor(black)
if `l'==1 {
local xant=`x'
}
else {
local xant=`diffmat'[`i',`=`l'-1']
}
if `xant'>`x' {
local star *
local staritem *
}
else {
local star
}
local scatterj `" `scatterj' `sep' scatteri `y' `x' , pstyle(p`l') || pci `y' `xant' `y' `x', pstyle(p1) color(black)"'
local sep ||
if `x'<`floor' {
local floor=floor(`x')
}
if `x'>`ceil'&`x'!=. {
local ceil=ceil(`x')
}
}
local ylbl `ylbl' `=-`i'*`unit'' "``i''`staritem'"
local scatteri `scatteri' || scatteri `y' `=`floor'-2' "``i''",mcolor(black) mlabcolor(black) msize(vtiny)
}
qui su eff
local maxe=ceil(`=(floor(`r(max)'/10)+1)*10')
qui su TInf
local maxi=ceil(`r(max)')
qui su density
local maxd=round(`r(max)', 0.01)+0.01
qui drop if u<`floor'|u>`ceil'
*di "qui graph twoway (bar eff u, barwidth(.2) yaxis(1) legend(off) xlabel(0(1)`ceil')) (line TInf u,yaxis(2)) (line density u,yaxis(3)) `scatterj' , name(map,replace) ytitle(Frequencies) ylabel(0(`=`maxi'/5')`maxi' ,axis(2)) ylabel(0(`=`maxd'/5')`maxd' ,axis(3)) ylabel(-`maxe'(`=`maxe'/5')`maxe' ,axis(1)) title(Individuals/items representations (Map)) xsize(12) ysize(9) note(Red line: Information curve - Green line : Density of the latent trait) xtitle(Latent trait) `fsm'"
*graph combine TIC IIC, col(1)
*graph save "map" "map.gph", replace
*discard
*qui graph twoway line TInf u , name(map,replace)
*qui graph twoway `scatterj' , name(map2,replace) ytitle("") ylabel(`ylbl', grid angle(0)) legend(off) xsize(12) ysize(9)
*su
*list eff u if eff!=0
*browse
qui graph twoway (bar eff u, barwidth(.2) yaxis(1) xlabel(`floor'(1)`ceil') color(erose)) (line TInf u,yaxis(2) lwidth(medthick)) (line density u,yaxis(3) lwidth(medthick) ) `scatterj' , xline(0, lcolor(black)) legend(on position(6) order(`"`legend'"') rows(1) subtitle(Threshold parameters) size(small)) name(map,replace) ytitle(" Frequencies") ylabel(0(`=`maxi'/5')`maxi' `maxi'(`maxi')`=`maxi'*2' ,axis(2)) yscale(axis(2) off) yscale(axis(3) off) ylabel(-`maxd'(`=`maxd'/5')`maxd' ,axis(3)) yline(0,lwidth(thick) lcolor(black)) ylabel(`ylbl',/*noticks*/ grid angle(0) axis(1)) ylabel(`ylbl' 0(`=`maxe'/5')`maxe', grid angle(0) axis(1)) title("Individuals/items representations (Map)") xsize(12) ysize(9) note("Red line: Information curve - Green line : Density of the latent trait - * : dysfunctioning items") xtitle("Latent trait") `fsm'
*qui graph twoway (bar eff u, barwidth(.2) yaxis(1) xlabel(`floor'(1)`ceil') color(erose)), name(jbh,replace)
*histogram u, name(map,replace)
*graph use "map.gph", name(map, replace)
*graph combine TIC IIC, xcombine col(1)
}
qui use `savefile', clear
}
/*************************************************************************************************************
Best estimates by category
*************************************************************************************************************/
tempname bestest
matrix `bestest'=J(`nbitems',`=`modamax'+1',.)
di
local long=`modamax'*8+33
di
di "Best estimates by answer category"
di "{hline `long'}"
di "Item" _col(29) "Cat 0" _c
forvalues j=1/`modamax' {
local col=29+`j'*8
di _col(`col') "Cat `j'" _c
}
di
di "{hline `long'}"
forvalues i=1/`nbitems' {
di "``i''" _c
forvalues j=0/`modamax`i'' {
di _col(`=28+`j'*8') %6.3f round(`bestest``i''_`j'', 0.001) _c
matrix `bestest'[`i',`=`j'+1']=`bestest``i''_`j''
}
di
}
di "{hline `long'}"
/*************************************************************************************************************
EQUATING
*************************************************************************************************************/
*set trace on
if "`eqset1'"!="" {
tokenize `eqset1'
local nbset1: word count `eqset1'
forvalues i=1/`nbset1' {
local eq1_`i':word `i' of `eqset1'
*di "set1 (`nbset1') : `eq1_`i''"
}
*di "`eqset1'"
tokenize `eqset2'
local nbset2: word count `eqset2'
*di "`eqset2'"
forvalues i=1/`nbset2' {
local eq2_`i':word `i' of `eqset2'
*di "set2 (`nbset2') : `eq2_`i''"
}
tempfile fileeq
qui save `fileeq',replace
forvalues t=1/2{
local scoremaxset`t'=0
forvalues i=1/`nbset`t'' {
*di "`eq`t'_`i''"
*local tmp=""
local scoremaxset`t'=`scoremaxset`t''+`modamax`eq`t'_`i'''
}
}
drop _all
*set trace on
qui set obs `=(`scoremaxset1'+`scoremaxset2'+2)*3'
forvalues t=1/2 {
qui gen scoreset`t'=.
qui gen scoreset`t'm=.
qui gen scoreset`t'p=.
}
forvalues i=0/`scoremaxset1' {
qui replace scoreset1=`i' in `=`i'+1'
qui replace scoreset1m=`i' in `=`i'+1+(`scoremaxset1'+`scoremaxset2'+2)'
qui replace scoreset1p=`i' in `=`i'+1+(`scoremaxset1'+`scoremaxset2'+2)*2'
}
forvalues i=`=`scoremaxset1'+2'/`=`scoremaxset1'+`scoremaxset2'+2' {
qui replace scoreset2=`i'-`scoremaxset1'-2 in `i'
qui replace scoreset2m=`i'-`scoremaxset1'-2 in `=`i'+(`scoremaxset1'+`scoremaxset2'+2)'
qui replace scoreset2p=`i'-`scoremaxset1'-2 in `=`i'+(`scoremaxset1'+`scoremaxset2'+2)*2'
}
local s=0
local eqset1b
foreach i in `eqset1' {
qui gen s1_`i'=0
forvalues m=1/`modamax`i'' {
qui gen s1_`i'_`m'=0 in 1/`=`scoremaxset1'+1'
qui replace s1_`i'_`m'=1 if scoreset1>`s' in 1/`=`scoremaxset1'+1'
qui replace s1_`i'=s1_`i'+s1_`i'_`m'
local ++s
}
local eqset1b `eqset1b' s1_`i'
}
local s=0
local eqset2b
foreach i in `eqset2' {
qui gen s2_`i'=0
forvalues m=1/`modamax`i'' {
qui gen s2_`i'_`m'=0 in `=`scoremaxset1'+2'/`=`scoremaxset1'+`scoremaxset2'+2'
qui replace s2_`i'_`m'=1 if scoreset2>`s' in `=`scoremaxset1'+2'/`=`scoremaxset1'+`scoremaxset2'+2'
qui replace s2_`i'=s2_`i'+s2_`i'_`m'
local ++s
}
local eqset2b `eqset2b' s2_`i'
}
tokenize `varlist'
tempname diffset1 diffset2
*matrix list `diffmat'
forvalues t=1/2 {
qui matrix `diffset`t''=J(`nbset`t'',`modamax',.)
local n=1
local listset`t'
foreach j in `eqset`t'' {
forvalues i=1/`nbitems' {
if "`j'"=="``i''" {
local listset`t' `listset`t'' `i'
forvalues m=1/`modamax' {
qui matrix `diffset`t''[`n',`m']=`diffmat'[`i',`m']
}
local ++n
}
}
}
}
*matrix list `diffset1'
*matrix list `diffset2'
local var=`covariates'[1,1]
qui gen lt=.
*qui gen selt=.
forvalues t=1/2 {
tempname matscorelt`t'
qui pcm `eqset`t'b', diff(`diffset`t'') var(`var') minsize(1)
qui matrix `matscorelt`t''=r(matscorelt)
*di "matscorelt`t':"
*matrix list `matscorelt`t''
forvalues i=0/`scoremaxset`t'' {
qui replace lt=`matscorelt`t''[`=`i'+1',2] if scoreset`t'==`i'
qui replace lt=`matscorelt`t''[`=`i'+1',2]+1.96*`matscorelt`t''[`=`i'+1',3] if scoreset`t'p==`i'
qui replace lt=`matscorelt`t''[`=`i'+1',2]-1.96*`matscorelt`t''[`=`i'+1',3] if scoreset`t'm==`i'
*qui replace selt=`matscorelt`t''[`=`i'+1',3] if scoreset`t'==`i'
}
qui ipolate scoreset`t' lt, gen(score`t') epolate
}
qui ipolate scoreset1 lt, gen(score1bis) epolate
*list
forvalues t=1/2 {
qui replace score`t'=scoreset`t'm if scoreset`t'm!=.
qui replace score`t'=scoreset`t'p if scoreset`t'p!=.
qui replace score1=score1bis if score1==.
qui replace score`t'=0 if score`t'<0
qui replace score`t'=`scoremaxset`t'' if score`t'>`scoremaxset`t''
}
forvalues t=1/2 {
tempname matscore`t'
qui matrix `matscore`t''=J(`=`scoremaxset`t''+1',7,.)
forvalues s=0/`scoremaxset`t'' {
qui matrix `matscore`t''[`=`s'+1',1]=`s'
qui su lt if scoreset`t'==`s'
qui matrix `matscore`t''[`=`s'+1',2]=r(mean)
qui su lt if scoreset`t'm==`s'
qui matrix `matscore`t''[`=`s'+1',3]=r(mean)
qui su lt if scoreset`t'p==`s'
qui matrix `matscore`t''[`=`s'+1',4]=r(mean)
qui su score`=3-`t'' if scoreset`t'==`s'
qui matrix `matscore`t''[`=`s'+1',5]=r(mean)
qui su score`=3-`t'' if scoreset`t'm==`s'
qui matrix `matscore`t''[`=`s'+1',6]=r(mean)
qui su score`=3-`t'' if scoreset`t'p==`s'
qui matrix `matscore`t''[`=`s'+1',7]=r(mean)
}
matrix colnames `matscore`t'' =score`t' lt lt- lt+ score`=3-`t'' score`=3-`t''- score`=3-`t''+
*matrix list `matscore`t''
di
di "{hline 78}"
di "EQUATING SET`t' TO SET`=3-`t''"
di "{hline 78}"
di "Set`t' : `eqset`t''"
di "Set`=3-`t'' : `eqset`=3-`t'''"
di "{hline 78}"
di _col(20) "<----- Latent trait ----->" _col(52) "<------- Score `=3-`t'' --------->"
di "Score`t'" _col(20) "Estimated" _col(39) "[95%IC]" _col(52) "Estimated" _col(72) "[95%IC]"
di "{hline 78}"
forvalues s=0/`scoremaxset`t'' {
di %4.0f `matscore`t''[`=`s'+1',1] _col(24) %5.2f `matscore`t''[`=`s'+1',2] _col(33) "[" %5.2f `matscore`t''[`=`s'+1',3] ";" %5.2f `matscore`t''[`=`s'+1',4] "]" _col(56) %5.2f `matscore`t''[`=`s'+1',5] _col(66) "[" %5.2f `matscore`t''[`=`s'+1',6] ";" %5.2f `matscore`t''[`=`s'+1',7] "]"
}
di "{hline 78}"
return matrix score`t'_to_`=3-`t''=`matscore`t''
if "`eqgraph'"!="" {
*twoway (line lt scoreset1) (line lt scoreset2), name(eq1)
*twoway (line scoreset1 scoreset2 lt) , name(eq2)
*twoway (line score1 scoreset1m scoreset1p score2), name(eq3)
*twoway (line score2 scoreset2m scoreset2p score1), name(eq4)
twoway (line score`t' score`=3-`t'' if scoreset`=3-`t''!=.) (line score`t' score`=3-`t'' if scoreset`=3-`t''m!=.) (line score`t' score`=3-`t'' if scoreset`=3-`t''p!=.), title("Equating score of the Set `t' from the Set `=3-`t''") ytitle("Score `t'") xtitle("Score `=3-`t''") ylabel(0(1)`scoremaxset`t'') xlabel(0(1)`scoremaxset`=3-`t''') name(eq`t'to`=3-`t'')
*twoway (line score2 score1 if scoreset1!=.) (line score2 score1 if scoreset1m!=.) (line score2 score1 if scoreset1p!=.), name(eq6)
}
}
*save prout, replace
*clear
qui use `fileeq',clear
}
/*************************************************************************************************************
RETOUR AU FICHIER INITIAL ET SAUVEGARDE DES NOUVELLES VARIABLES
*************************************************************************************************************/
if "`visit'"!="" {
tempfile sauv
set trace on
*tempname corrlatent corrbilatent
qui keep `latent'* `selatent'* `id' `visit'
qui reshape wide , i(`id') j(`visit')
qui sort `id'
qui save `sauv', replace
restore,preserve
if "`replace'"!=""&("`genlt'"!=""|"`geninf'"!="") {
capture drop `genlt'
capture drop `genlt'_se
capture drop `geninf'
capture drop `genlt'_corr
capture drop `genlt'_opt
capture drop `genlt'_opt_se
}
*su
tempname idorder
qui gen `idorder'=_n
qui sort `id'
qui merge 1:1 `id' using `sauv'
qui sort `idorder'
qui drop `idorder'
}
else {
*set trace on
*set tracedepth 1
if "`genlt'"!="" {
qui gen `genlt'_corr=.
forvalues s=0/`scoremax' {
qui replace `genlt'_corr=`estlt`s'' if `score'==`s'
}
forvalues g=1/`nbgroups' {
qui replace `genlt'_corr=`clt`g'' if `group'==`g'&`genlt'_corr==.
}
tempvar tmpitem mean nbnonmiss
forvalues i=1/`nbitems' {
qui gen `tmpitem'_`i'=.
forvalues k=0/`modamax' {
qui replace `tmpitem'_`i'=`bestest'[`i',`=`k'+1'] if ``i''==`k'
}
}
*su
qui egen `genlt'_opt=rowmean(`tmpitem'_*)
qui egen `genlt'_opt_se=rowsd(`tmpitem'_*)
qui egen `nbnonmiss'=rownonmiss(`tmpitem'_*)
qui replace `genlt'_opt_se=sqrt((`genlt'_opt_se^2+`resvar')/`nbnonmiss')
}
restore,not
}
/*************************************************************************************************************
CREATION DU DOCX
*************************************************************************************************************/
if "`docx'"!="" {
putdocx clear
putdocx begin
putdocx paragraph
putdocx text ("General informations") , bold underline font(,14) smallcaps
putdocx paragraph
putdocx text ("Number of individuals: `nbobs'")
putdocx paragraph
putdocx text ("Number of complete individuals: `nbobsssmd'")
putdocx paragraph
putdocx text ("Number of items: `nbitems'")
putdocx paragraph
putdocx text ("List of items: `varlist'")
putdocx paragraph
putdocx text ("Date: $S_DATE, $S_TIME")
putdocx paragraph
local model Partial Credit Model (PCM)
if "`rsm'"!="" {
local model Rating Scale Model (RSM)
}
putdocx text ("Model: `model'")
putdocx paragraph
putdocx text ("Marginal log-likelihood: `ll'")
putdocx paragraph
putdocx text ("Estimation of the parameters") , bold underline font(,14) smallcaps
putdocx table tablename = matrix(`diff') , nformat(%9.3f) rownames colnames border(start, nil) border(insideH, nil) border(insideV, nil) border(end, nil)
qui putdocx table tablename = matrix(`covariates') , nformat(%9.3f) rownames colnames border(start, nil) border(insideH, nil) border(insideV, nil) border(end, nil)
putdocx paragraph
putdocx text ("Fit indexes for items") , bold underline font(,14) smallcaps
qui putdocx table tablename = matrix(`fit') , nformat(%9.3f) rownames colnames border(start, nil) border(insideH, nil) border(insideV, nil) border(end, nil)
local extension png
}
/*************************************************************************************************************
SAUVEGARDE DES GRAPHIQUES
*************************************************************************************************************/
*set trace on
if "`filesave'"!="" {
if "`graphs'"!="" {
if "`docx'"!="" {
putdocx pagebreak
putdocx paragraph
putdocx text ("General graphs") , bold underline font(,14) smallcaps
}
foreach i in TCC TCCeo TIC IIC map {
if "`extension'"!="" {
qui graph export "`dirsave'//`i'.`extension'", replace name(`i')
}
*graph display `i'
*qui graph save "`dirsave'//`i'", replace
if "`docx'"!="" {
putdocx paragraph
putdocx image "`dirsave'//`i'.png", height(10cm)
}
}
*discard
if "`graphitems'"=="" {
forvalues i=1/`nbitems' {
if "`docx'"!="" {
putdocx paragraph
putdocx text ("Graphs for ``i''") , bold underline font(,14) smallcaps
}
foreach j in CCC ICC residuals {
*graph display `j'``i''
*qui graph save "`dirsave'//`j'_``i''", replace
if "`extension'"!="" {
qui graph export "`dirsave'//`j'_``i''.`extension'", replace name(`j'``i'')
}
if "`docx'"!="" {
putdocx paragraph
putdocx image "`dirsave'//`j'_``i''.png" , height(10cm)
}
}
}
}
}
}
if "`docx'"!="" {
putdocx save "`dirsave'//`docx'.docx", replace
}
/*************************************************************************************************************
RETURNS
*************************************************************************************************************/
matrix colnames `diff'=Estimate "s.e." z p lb ul
matrix colnames `covariates'=Estimate "s.e." z p lb ul
matrix rownames `diff'=`diffname'
matrix rownames `covariates'=Variance `continuous' `catname'
return matrix difficulties=`diff'
return matrix covariates=`covariates'
return matrix matscorelt=`matscorelt'
return matrix bestest=`bestest'
capture restore, not
end