# Scenario catalogue ## Scenarios without DIF | | **J** | | **Epsilon** | | | -------------- | ----- | ----- | ----- | ----- | | | **4** | **7** | **0.2** | **0.5** | | **Scenario 101** | X | | X | | | **Scenario 102** | X | | | X | | **Scenario 103** | | X | X | | | **Scenario 104** | | X | | X | Each scenario has 5 subscenarios: - A - H0 true - B - H1 true, effect size 0.2 - C - H1 true, effect size 0.4 - D - H1 true, effect size -0.2 - E - H1 true, effect size -0.4 ## Scenarios with DIF | | **J** | | **Epsilon** | | **Nb items DIF** | | | **DIF size** | | | --------------- | ----- | ----- | ----- | ----- | ---------------- | ----- | ----- | -------------- | ------- | | | **4** | **7** | **0.2** | **0.5** | **1** | **2** | **3** | **0.3** | **0.5** | | **Scenario 105** | X | | X | | X | | | X | | | **Scenario 106** | X | | | X | X | | | X | | | **Scenario 107** | X | | X | | X | | | | X | | **Scenario 108** | X | | | X | X | | | | X | | **Scenario 109** | X | | X | | | X | | X | | | **Scenario 110** | X | | | X | | X | | X | | | **Scenario 111** | X | | X | | | X | | | X | | **Scenario 112** | X | | | X | | X | | | X | | **Scenario 113** | | X | X | | | X | | X | | | **Scenario 114** | | X | | X | | X | | X | | | **Scenario 115** | | X | X | | | X | | | X | | **Scenario 116** | | X | | X | | X | | | X | | **Scenario 117** | | X | X | | | | X | X | | | **Scenario 118** | | X | | X | | | X | X | | | **Scenario 119** | | X | X | | | | X | | X | | **Scenario 120** | | X | | X | | | X | | X | Each scenario has 7 subscenarios: - A - H0 true, DIF -0.3/0.5 on traitement group - **MPR example** - B - H1 true, effect size 0.2, DIF +0.3/0.5 on traitement group - **BDI example** - C - H1 true, effect size 0.2, DIF -0.3/0.5 on traitement group - **Dentistry example** - D - H1 true, effect size 0.4, DIF +0.3/0.5 on traitement group - **BDI example** - E - H1 true, effect size 0.4, DIF -0.3/0.5 on traitement group - **Dentistry example** - F - H1 true, effect size -0.2, DIF -0.3/0.5 on traitement group - **Adverse effects example** - G - H1 true, effect size -0.4, DIF -0.3/0.5 on traitement group - **Adverse effects example** ## Confusion simulation details 8 covariates are simulated for each scenario, each defined by their odds ratio on treatment and odds ratio on outcome: **OR_TT^X**: Odds ratio describing the increase in probability of patients being treated when covariate X is positive. **OR_Y^X**: Odds ratio describing the increase in average outcome when covariate X is positive. Covariates are simulated as in *Sturmer et al, 2021*: | **Variables** | **OR_TT^X** | **OR_Y^X** | | -------------- | ----- | ----- | | **X_1** | 2.0 | 1.0 | | **X_2** | 1.5 | 1.0 | | **X_3** | 1.0 | 2.0 | | **X_4** | 1.0 | 1.5 | | **X_5** | Epsilon | Epsilon | | **X_6** | 1.5 x Epsilon | 1.5 x Epsilon | | **X_7** | 1.0 / 10 | 1.0 / 10 | | **X_8** | 1.0 / 0.1 | 1.0 / 10 | **X_1** and **X_2** are thus *Instrumental variables*, **X_3** and **X_4** are *Risk factors for the outcome* and **X_5** and **X_6** are *Confounders*. **X_7** and **X_8** are unobserved tail-end cofounders indicating rare treatment decisions for extreme propensity score values in each group. Untreated patients with very high propensity of treatment will be very likely to have **X_7**=1 (patients that should have been treated but weren't due to frailty). Treated patients with very low propensity of treatment will be very likely to have **X_8**=1 (patients that should not have been treated but were due to severe condition). For each replication, observed covariates explained treatment with an AUC drawn randomly between 0.65 and 0.85 (average: 0.75).