You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4750 lines
150 KiB
Plaintext

7 months ago
*! version 2.3.20 SRH 7 Sept 2011
program define gllamm, eclass
version 7.0
timer on 1
if replay() {
if "`e(cmd)'" ~= "gllamm" {
di in red "gllamm was not the last command"
error 301
}
Replay `0'
}
else {
Estimate `0'
}
timer off 1
end
program define procstr, eclass
version 6.0
tempname bc b Vc Vr V ll esamp
noi disp "processing constraints"
scalar `ll' = e(ll)
local df = e(df_m)
local dof
if "`df'"~="."{
local dof "dof(`df')"
}
local k = e(k)
capture matrix `Vr' = e(Vr)
capture robclus "`e(robclus)'"
matrix `bc' = e(b)
matrix `Vc' = e(V)
local y = "`e(depvar)'"
matrix `b' = `bc'*M_T' + M_a
matrix colnames `b' = $HG_coln
matrix coleq `b' = $HG_cole
* matrix list `b'
* matrix list `Vc'
matrix `V' = M_T*`Vc'*M_T'
* disp "computed V"
* matrix list `V'
estimates post `b' `V' M_C, $HG_obs `dof'
est local ll =`ll'
est local k = `k'
est local depvar "`y'"
capture est matrix Vr `Vr'
capture est local robclus "`robclus'"
* disp "posted results"
end
program define Replay, eclass
version 6.0
syntax [, Level(real $S_level) EFORM ALLC ROBUST CLUSTER(varname) DOTS SCorefil(passthru) noROb noDISplay EVAL]
tempname M_nffc M_nu Vs
if "`eval'"==""{
if "`e(pweight)'"~="" {
local robust robust
}
if "`robust'"~=""|"`cluster'"~=""{
if "`cluster'"~=""{
local cluster cluster(`cluster')
}
gllarob, `cluster' `dots' `scorefil' `rob'
}
if ("`robust'"==""|"`rob'"~="")&"`cluster'"==""{
* disp "reposting model-based standard errors"
matrix `Vs' = e(Vs)
estimates repost V =`Vs'
}
}
if "`display'"==""{
local const = e(const)
local tplv = e(tplv)
matrix `M_nffc' = e(nffc)
capture matrix `M_nu' = e(nu)
* capture matrix list `M_nu'
if _rc == 0{
disp " "
local j = 1
while `j' <= `tplv'{
disp in gr "number of level `j' units = " in ye `M_nu'[1,`j']
local j = `j' + 1
}
disp " "
}
local cn = e(cn)
if `cn'>0{
disp in gr "Condition Number = " in ye `cn'
}
else{
disp in gr "Condition Number could not be computed"
}
disp " "
* matrix list `M_nffc'
local numeq = colsof(`M_nffc')
if `M_nffc'[1,1]==0{
local numeq = `numeq' -1
}
if `numeq' > 1{
local first neq(`numeq')
}
else{
local first first
}
local primess
if `e(prior)' == 1 {
local primess "with prior "
}
if e(ll_0)==.|`M_nffc'[1,1]==0{
local nohead "noheader"
if `const'==0{
disp in gr "gllamm model `primess'"
}
else{
disp in gre "gllamm model `primess'with constraints"
*matrix dispCns
}
disp " "
if `e(prior)' == 1 {
disp in gr "log posterior = " in ye e(ll)
disp in gr "log likelihood = " in ye e(a_ll)
}
else{
disp in gr "log likelihood = " in ye e(ll)
}
}
if "`eform'"~=""{
local eform "eform(exp(b))"
}
disp " "
if "`cluster'"~=""|("`robust'"~=""&"`rob'"==""){
if "`cluster'"~=""{
disp "Robust standard errors for clustered data: `cluster'"
}
else{
disp "Robust standard errors"
}
}
if `M_nffc'[1,1]>0|`numeq'>0 {
quietly q born
if $S_1>15502{ /* version 8 or later */
_coef_table, level(`level') `first' `eform'
}
else{ /* older versions */
if `const' == 0{
noi ml display, level(`level') `nohead' `first' `eform'
}
else{
matrix dispCns
noi estimates display, level(`level') `first' `eform'
}
}
}
else{
disp in gr "No fixed effects"
}
noi disprand
if "`allc'"~=""{
if `const' == 0{
noi ml display, level(`level') `nohead'
}
else{
noi estimates display, level(`level')
}
}
}
end
program define Estimate, eclass
version 6.0
syntax varlist(min=1) [if] [in] , I(string) [NRf(numlist integer min=1 >=1) /*
*/ Eqs(string) GEqs(string) PEqs(string) /*
*/ noCORrel noCOnstant BMATrix(string) INTER(string) FRLoad(numlist integer min=1 >=1) /*
*/ Family(string) DEnom(varname numeric min=1) Link(string) EXpanded(string) /*
*/ Offset(varname numeric) Basecategory(integer 999) /*
*/ THresh(string) ETHresh(string) COMPosite(varlist numeric min=3) * ]
*disp in re "`opt'"
*disp in re "1: `varlist'"
local origif `"`if'"'
local origin `"`in'"'
local origvar `"`varlist'"'
local opt "`options'"
local 0 "`origvar' `origif' `origin', `opt'"
syntax varlist(min=1) [if] [in] [, /*
*/ Weightf(string) LV(varname numeric min=1) FV(varname numeric min=1) S(string) /*
*/ NATS IP(string) NIp(numlist integer min=1 >=1) ADapt Constraints(numlist) /*
*/ FRom(string) LONG Gateaux(passthru) LF0(passthru) SEarch(passthru) /*
*/ ROBust CLuster(varname) PWeight(string) ITerate(passthru)/*
*/ DOts noLOg TRace noDISplay noESt EVal Level(real $S_level) INit noDIFficult /*
*/ EFORM ALLC ADOONLY SKIP COPY PRior(passthru) ] /* does not allow extra options! */
*disp in re "2: `varlist'"
*disp in re "i: `i'"
*disp in re "frload: `frload'"
*disp in re "display: `display'"
*disp in re "iterate: `iterate'"
tempname mat mnip mnbrf
global HG_error=0
/* deal with adoonly */
global HG_noC = 0
global HG_noC1 = 0
global HG_noC2 = 0
if "`adoonly'"=="" {
qui q born
if $S_1 < 16350 {
global HG_noC2 = 1
if $S_1 < 15722 {
noi di
noi di in gr "You must have the Stata 8 executable updated on or after " _c
noi di in ye %d 15722
noi di in gr "in order to use all internal routines"
global HG_noC1 = 1
if $S_1 < 15274 {
global HG_noC = 1
noi di in gr "Option adoonly assumed."
noi di
}
}
}
}
if "`adoonly'"!="" {
global HG_noC = 1 /* link and family */
global HG_noC1 = 1 /* lnupdate */
global HG_noC2 = 1 /* don't want to set HG_noC to 0 */
}
/* deal with trace */
if "`trace'"!="" { local noi "noisily" }
/* deal with dots */
global HG_dots = 0
if "`dots'"!="" {
global HG_dots = 1
}
/* deal with init */
global HG_init=0
if "`init'"~="" {
global HG_init=1
}
/* deal with if and in */
marksample touse
qui count if `touse'
if _result(1) <= 1 {
di in red "insufficient observations"
exit 2001
}
/* deal with varlist */
tokenize `varlist'
local y "`1'"
macro shift /* `*' is list of dependent variables */
local indep "`*'"
local num: word count `indep' /* number of independent variables */
markout `touse' `y' `indep'
/* deal with Link and Family */
global HG_lev1=0
global HG_famil
global HG_linko
global HG_link
matrix M_olog=(0)
capture matrix drop M_oth
global HG_mlog=0
global HG_nolog = 0
global HG_lv
global HG_fv
global HG_smlog=0
global HG_oth = 0
local l: word count `family'
if `l'>1 {
`noi' qui disp "more than one family"
if "`fv'"==""{
disp in re "need fv option"
exit 198
}
else{
confirm variable `fv'
global HG_fv `fv'
}
parse "`family'", parse(" ")
local n=1
while "`1'"~=""{
qui count if `fv'==`n'
if _result(1)==0{
disp "family `1' not used"
}
fm "`1'"
if "$S_2"=="gauss"{
if $HG_lev1==0{
global HG_lev1=1
}
else if $HG_lev1==2{
global HG_lev1=3
}
}
else if "$S_2"=="gamma"{
if $HG_lev1==0{
global HG_lev1=2
}
else if $HG_lev1==1{
global HG_lev1=3
}
}
global HG_famil "$HG_famil $S_2"
local n = `n'+1
mac shift
}
}
local k: word count `link'
local mll = 0
if `k'>1{
`noi' qui disp "more than one link"
if "`lv'"==""{
disp in re "need lv option"
exit 198
}
else{
confirm variable `lv'
global HG_lv `lv'
}
parse "`link'", parse(" ")
local n=1
while "`1'"~=""{
qui count if $HG_lv==`n'
if _result(1)==0{
disp "link `1' not used"
}
lnk "`1'"
if "$S_1"=="sprobit"|"$S_1"=="soprobit"{
if $HG_lev1 == 2{
global HG_lev1 = 3
}
else{
global HG_lev1 = 1
}
}
if "$S_1"=="ll"{
global HG_noC = $HG_noC2
}
/* nominal */
if "$S_1"=="mlogit"|"$S_1"=="smlogit"{
if $HG_mlog>0{
disp in re "can only have one mlogit link"
exit 198
}
global HG_mlog=`n'
if "$S_1"=="smlogit"{
if $HG_lev1 == 2{
global HG_lev1 = 3
}
else{
global HG_lev1 = 1
}
}
tempvar first
sort `touse' $HG_lv `y'
qui by `touse' $HG_lv `y': gen byte `first' = cond(_n==1,1,0)
mkmat `y' if `first' == 1 & `touse' & $HG_lv == `n', mat(M_respm)
if "$S_1"=="smlogit"{global HG_smlog=1}
}
/* ordinal */
else if "$S_1"=="ologit"|"$S_1"=="oprobit"|"$S_1"=="ocll"|"$S_1"=="soprobit"{
global HG_linko "$HG_linko $S_1"
if $HG_nolog>0{
* disp "more than one ordinal response"
matrix M_olog = M_olog,`n'
}
else{
capture matrix drop M_nresp
matrix M_olog[1,1] = `n'
tempvar first
sort `touse' $HG_lv `y'
qui by `touse' $HG_lv `y': gen byte `first' = cond(_n==1,1,0)
}
mkmat `y' if `first' == 1 & `touse' & $HG_lv == `n', mat(`mat')
local ll = rowsof(`mat')
* matrix list `mat'
* disp "adding `ll' to M_nresp"
matrix M_nresp = nullmat(M_nresp),`ll'
if `ll'>`mll'{
local mll = `ll'
}
global HG_nolog = $HG_nolog + 1
}
/* other */
else {
global HG_link "$HG_link $S_1"
matrix M_oth = nullmat(M_oth),`n'
global HG_oth=1
}
local n = `n'+1
mac shift
}
if $HG_nolog>0{
tempname junk
global HG_lvolo "`junk'"
qui gen byte $HG_lvolo = 0
matrix M_resp = J(`mll',$HG_nolog,0)
local no = 1
local totresp = 0
while `no'<=$HG_nolog{
local olog = M_olog[1,`no']
qui replace $HG_lvolo = 1 if $HG_lv == `olog'
mkmat `y' if `first' == 1 & `touse' & $HG_lv == `olog', mat(`mat')
local ii = 1
while `ii'<= M_nresp[1,`no']{
* disp "M_resp[`ii',`no'] = mat[`ii',1]"
matrix M_resp[`ii',`no'] = `mat'[`ii',1]
local ii = `ii' + 1
}
local totresp = `totresp' + M_nresp[1,`no']
local no = `no' + 1
}
}
if $HG_mlog>0{
if $HG_nolog==0{
tempname junk
global HG_lvolo "`junk'"
qui gen byte $HG_lvolo = 0
}
qui replace $HG_lvolo = 1 if $HG_lv == $HG_mlog
}
}
else if `k'<=1&`l'<=1{ /* no more than one link and one family given */
lnkfm "`link'" "`family'"
global HG_link = "$S_1"
global HG_famil = "$S_2"
if "$HG_link"=="ologit"|"$HG_link"=="oprobit"|"$HG_link"=="ocll"|"$HG_link"=="soprobit"{
global HG_linko = "$HG_link"
global HG_nolog = 1
matrix M_olog[1,1] = 1
}
if "$HG_link"=="smlogit"|"$HG_link"=="mlogit"{global HG_mlog=1}
if "$HG_famil"=="gauss"{global HG_lev1=1}
if "$HG_famil"=="gamma"{global HG_lev1=2}
if "$HG_link"=="sprobit"{global HG_lev1=1}
if "$HG_link"=="soprobit"{global HG_lev1=1}
if "$HG_link"=="smlogit"{global HG_lev1=1}
if "$HG_link"=="ll"{global HG_noC = $HG_noC2 }
if $HG_mlog==0&$HG_nolog==0{global HG_oth = 1}
}
else if `k'==1{
lnk "`lnk'"
global HG_link = "$S_1"
if "$HG_link"=="ologit"|"$HG_link"=="oprobit"|"$HG_link"=="ocll"|"$HG_link"=="soprobit"{
global HG_nolog = 1
matrix M_olog[1,1] = 1
global HG_linko = "$HG_link"
}
if "$HG_link"=="smlogit"|"$HG_link"=="mlogit"{global HG_mlog=1}
if "$HG_link"=="sprobit"{global HG_lev1=1}
if "$HG_link"=="smlogit"{global HG_lev1=1}
if "$HG_link"=="soprobit"{global HG_lev1=1}
if "$HG_link"=="ll"{global HG_noC = $HG_noC2 }
if $HG_mlog==0&$HG_nolog==0{global HG_oth = 1}
}
if `l'==1{
fm "`family'"
global HG_famil = "$S_2"
if "$HG_famil"=="gauss"{global HG_lev1=1}
if "$HG_famil"=="gamma"{global HG_lev1=2}
if $HG_mlog==0&$HG_nolog==0{global HG_oth = 1}
}
if ((`k'>1&`l'==0)|(`l'>1&`k'==0))&$HG_oth==1{
disp in re /*
*/ "both link() and fam() required for multiple links or families"
exit 198
}
markout `touse' $HG_lv $HG_fv
/* deal with noCORrel */
global HG_cor = 1
if "`correl'"~=""{
global HG_cor = 0
}
/* deal with DEnom */
global HG_denom
local f=0
parse "$HG_famil", parse(" ")
while "`1'"~=""&`f'==0{
if "`1'"=="binom"{
local f=1
}
mac shift
}
if `f'==1{
if "`denom'"~=""{
confirm variable `denom'
global HG_denom "`denom'"
}
else{
tempvar den
quietly gen byte `den'=1
global HG_denom "`den'"
}
}
else{
if "`denom'"~=""{
disp in blue/*
*/"option denom(`denom') given but binomial family not used"
}
}
markout `touse' `denom'
/* deal with offset */
global HG_off
if "`offset'"~=""{
global HG_off "`offset'"
local offset "offset(`offset')"
}
markout `touse' $HG_off
/* deal with ip */
global HG_gauss = 1
global HG_free = 0
global HG_cip = 1
global HG_mult = 0
if "`ip'"~=""{
if "`ip'"=="g"{
global HG_gauss = 1
}
else if "`ip'"=="l"{
global HG_gauss = 0
}
else if "`ip'"=="f"{
global HG_free = 1
}
else if "`ip'"=="m"{
global HG_mult = 1
global HG_gauss = 0
}
else if "`ip'"=="fn"{
global HG_free = 1
global HG_cip = 0
}
else {
disp in re "ip option `ip' not valid"
exit 198
}
}
global HG_lzpr lzprobg
global HG_zip zipg
* disp in re "HG_mult = " $HG_mult
if $HG_mult{
global HG_lzpr lzprobm
}
else if $HG_free{
global HG_lzpr lzprobf
global HG_zip zipf
}
/* deal with expanded */
global HG_ind
global HG_exp = 0
global HG_expf = 0
if "`expanded'"~=""{
global HG_exp = 1
if $HG_mlog==0{
disp in re "expanded option only valid with mlogit link"
exit 198
}
local k: word count `expanded'
if `k'~=3{
disp in re "expanded option must have three arguments"
}
local exp: word 1 of `expanded'
confirm variable `exp'
global HG_mlg `exp'
local k: word 2 of `expanded'
* 11/11/06
confirm variable `k'
global HG_ind `k'
local k: word 3 of `expanded'
if "`k'"=="o"{
global HG_expf=1
}
else{
if "$HG_link"~="mlogit"&"$HG_link"~="smlogit"{
disp in re "must use o in expanded option when combining mlogit with other links"
exit 198
}
}
* 11/11/06
markout `touse' $HG_mlg $HG_ind
}
else{
if $HG_mlog>0&"$HG_link"~="mlogit"&"$HG_link"~="smlogit"{
disp in re "must use expanded option when combining mlogit with other links"
exit 198
}
tempvar ind
gen byte `ind' = 1
global HG_ind `ind'
global HG_exp = 0
}
/* deal with composite */
global HG_comp = 0
global HG_coall
if "`composite'"~=""{
local k: word count `composite'
global HG_comp = `k' - 2
local k: word 1 of `composite'
global HG_mlg `k'
local k: word 2 of `composite'
global HG_ind `k'
local kk = 1
while `kk'<= $HG_comp {
local jj = `kk' + 2
local k: word `jj' of `composite'
global HG_co`kk' `k'
global HG_coall $HG_coall `k'
local kk = `kk' + 1
}
global HG_noC = $HG_noC2 /* use ado-code for link if not latest Stata 8 */
}
/* deal with I (turn list around)*/
if ("`i'"==""){
disp in red "i() required"
global HG_error=1
exit 198
}
local tplv: word count `i'
global HG_tplv = `tplv'+1
global HG_clus
local k = `tplv'
while `k'>=1{
local clus: word `k' of `i'
confirm numeric variable `clus'
markout `touse' `clus', strok
local k=`k'-1
global HG_clus "$HG_clus `clus'"
}
if "`expanded'"==""&"`composite'"==""{
tempvar id
gen long `id'=_n
global HG_clus "$HG_clus `id'"
}
else{
global HG_clus "$HG_clus $HG_mlg"
}
/* deal with weightf */
tempvar wt
quietly gen double `wt'=1
local j = 1
if "`weightf'"==""{
while (`j'<=$HG_tplv){
tempname junk
global HG_wt`j' "`junk'"
gen double ${HG_wt`j'}=1
local j = `j' + 1
}
global HG_weigh
}
else{
global HG_weigh "`weightf'"
local wtvars
local found = 0
while (`j'<=$HG_tplv){
capture confirm variable `weightf'`j' /* frequency weight */
if _rc ~= 0 {
tempname junk
global HG_wt`j' "`junk'"
gen double ${HG_wt`j'} = 1 /* can become non-integeger later */
}
else{
tempname junk
global HG_wt`j' "`junk'"
gen double ${HG_wt`j'}=`weightf'`j'
local wtvars `wtvars' `weightf'`j'
quietly replace `wt'=`wt'*${HG_wt`j'}
local found = `found' + 1
}
local j = `j' + 1
}
if `found' == 0 {
disp in red "weight variables `weightf' not found"
global HG_error=1
exit 111
}
markout `touse' `wtvars'
}
/* deal with probability weights */
local pw
local wtvars
if "`pweight'"~=""{
local robust robust
tempname wtp
local pw pweight
global HG_pwt "`pweight'"
quietly gen double `wtp' = 1
local j = 1
local found = 0
while (`j'<=$HG_tplv){
capture confirm variable `pweight'`j' /* probability weight */
if _rc == 0 {
quietly replace `wtp'=`wtp'*`pweight'`j'
local wtvars `wtvars' `pweight'`j'
local found = `found' + 1
}
local j = `j' + 1
}
if `found' == 0 {
disp in red "probability weight variables not found"
global HG_error=1
exit 111
}
markout `touse' `wtvars'
}
/* deal with cluster */
if "`cluster'"~=""{
* check that top-level cluster does not vary within cluster?
local k: word count $HG_clus
local top: word 1 of $HG_clus
qui sort `top' `cluster'
capture qui by `top' : assert `cluster'[1]==`cluster'[_N]
if _rc>0{
disp in re "`cluster' varies within `top'"
exit 198
}
markout `touse' `cluster'
local cluster cluster(`cluster')
}
/* deal with categorical response variables */
if "$HG_link" == "mlogit"|"$HG_link" == "smlogit"{
sort `touse' `y'
tempvar first
qui by `touse' `y': gen byte `first' = cond(_n==1,1,0)
mkmat `y' if `first' == 1 & `touse', mat(M_respm)
}
else if /*
*/ "$HG_link" == "ologit"|"$HG_link" == "ocll"|"$HG_link" == "oprobit"|"$HG_link"=="soprobit"{
sort `touse' `y'
tempvar first
qui by `touse' `y': gen byte `first' = cond(_n==1,1,0)
mkmat `y' if `first' == 1 & `touse', mat(M_resp)
local totresp = rowsof(M_resp)
matrix M_nresp = (`totresp')
}
/* deal with base-category */
if `basecategory'~=999{
if "$HG_link" ~= "mlogit"&"$HG_link" ~= "smlogit"{
disp in red "basecategory ignored because response not nominal"
}
}
if $HG_mlog>0&$HG_expf==0{
tempname bas
if `basecategory'==999{
scalar `bas' = M_respm[1,1]
matrix `bas' = (`bas')
local basecat = M_respm[1,1]
* disp in re "`basecat'"
}
else{
matrix `bas' = (`basecategory')
local basecat = `basecategory'
}
local n = rowsof(M_respm)
local j = 1
local found = 0
while `j'<=`n'{
local el = M_respm[`j',1]
if `el'==`basecat'{
local found = 1
}
else{
matrix `bas' = `bas'\ `el'
}
local j = `j' + 1
}
if `found' == 0 {
disp in re "basecategory = `basecat' not one of the categories"
exit 198
}
matrix M_respm = `bas'
local el = M_respm[1,1]
local basecat basecat(`el')
}
/* deal with noCOns */
if "`constant'"~=""{
if $HG_nolog>0{
disp in re "noconstant option not allowed for ordinal links:" _n "This is the default because all thresholds estimated"
exit 198
}
local cns
}
else{
if $HG_cip == 0{
disp in re "are you sure you need a constant with ip(fn) option?"
}
local num=`num'+1
local cns "_cons"
}
matrix M_nffc=(`num')
if `num'>0 {
global HG_fixe (`y': `y'=`indep', `constant')
local dep
}
else{
global HG_fixe
local dep "`y'="
}
/* fixed effects matrix */
global HG_ethr = 0
if `num' > 0 {
matrix M_initf=J(1,`num',0)
matrix coleq M_initf=`y'
matrix colnames M_initf=`indep' `cns'
}
else{
cap matrix drop M_initf
}
if $HG_nolog==0{
if "`thresh'"~=""{ disp in re "thresh option ignored" }
if "`ethresh'"~=""{ disp in re "ethresh option ignored" }
}
else if $HG_nolog>0{
if "`ethresh'"~=""{
if "`thresh'"~=""{
disp in re "cannot use both ethresh() and thresh() options!
exit 198
}
global HG_ethr = 1
local thresh `ethresh'
}
if "`thresh'"~=""{
local k: word count `thresh'
if `k'~=$HG_nolog{
disp in re "number of threshold equations should be " $HG_nolog
exit 198
}
}
global HG_fixe
local n = rowsof(M_resp)
matrix M_nffc[1,1] = `num'-1
if `num'>1{
global HG_fixe (`y': `y'=`indep', nocons)
matrix `mat' = M_initf[1,1..`num'-1]
local ce: coleq(`mat')
local cn `indep'
matrix M_initf=J(1,`num'-1,0)
}
else{
capture matrix drop M_initf
}
local el = M_nffc[1,1]
local ii = 1
local nxt = M_nffc[1,1] + 1
local ntr = 1
local vars
local rhs "_cons"
while `ii'<= $HG_nolog{
local j = 1
if "`thresh'"~=""{
local eqnam: word `ii' of `thresh'
eq ? "`eqnam'"
local vars "$S_1"
markout `touse' `vars'
local ntr: word count `vars'
local ntr = `ntr' + 1
local rhs "`vars' _cons"
}
while `j'< M_nresp[1,`ii']{
* disp "`ii'th ordinal response, level `j'"
local el = `el' + `ntr'
matrix M_nffc = M_nffc, `el'
matrix `mat'=J(1,`ntr',0)
matrix coleq `mat' = _cut`ii'`j'
local cee: coleq(`mat')
local ce `ce' `cee'
local cn `cn' `rhs'
global HG_fixe $HG_fixe (_cut`ii'`j':`vars')
if `j' == 1 & `ii'==1 & `num' == 1{
global HG_fixe (_cut`ii'`j':`y'= `vars')
}
local j = `j' + 1
if $HG_ethr{
matrix `mat'[1,`ntr'] = - 0.5
}
else{
matrix `mat'[1,`ntr'] = `j' - (M_nresp[1,`ii']+1)/2
}
matrix M_initf = nullmat(M_initf), `mat'
local nxt = `nxt' + 1
}
local ii = `ii' + 1
}
matrix colnames M_initf=`cn'
matrix coleq M_initf=`ce'
* matrix list M_initf
}
if ($HG_mlog>0)&$HG_expf==0{
global HG_fixe
local n = rowsof(M_respm)
matrix `bas'=M_initf
matrix drop M_initf
matrix drop M_nffc
local j = 2
while `j'<=`n'{
local el = M_respm[`j',1]
matrix coleq `bas' = c`el'
matrix M_initf = nullmat(M_initf), `bas'
matrix M_nffc = nullmat(M_nffc), (`j'-1)*`num'
if `j' == 2{
global HG_fixe $HG_fixe ( c`el':`y' = `indep', `constant')
}
else{
global HG_fixe $HG_fixe ( c`el':`indep', `constant')
}
local j = `j' + 1
}
local num = `num'*(`n' - 1)
}
* matrix list M_nffc
* matrix list M_initf
/* display information */
quietly `noi'{
disp " "
disp in gr "General model information"
*disp in smcl in gr "{hline 78}" _n
di in gr _dup(78) "-" _n
disp in gr "dependent variable:" in ye " `y'"
if $HG_oth{
disp in gr "family:" in ye " $HG_famil"
disp in gr "link:" in ye " $HG_link"
}
if "$HG_linko"~=""{
disp in gr "ordinal responses:" in ye " $HG_linko"
}
if $HG_mlog>0{
if $HG_smlog==1 {
disp in gr "nominal responses:" in ye " smlogit"
}
else{
disp in gr "nominal responses:" in ye " mlogit"
}
}
if "$HG_denom"~=""{
if "`denom'"~=""{
disp in gr "denominator:" in ye " `denom'"
}
else{
disp in gr "denominator:" in ye " 1"
}
}
if "`offset'"~=""{
disp in gr "offset:" in ye " $HG_off"
}
local m = colsof(M_nffc)
if `m'==1&M_nffc[1,1]>0{
local cuts: colnames(M_initf)
disp in gr "equation for fixed effects " in ye " `cuts'"
}
else if `m'==1{
disp in gr "equation for fixed effects " in ye " none"
}
else{
disp in gr "equations for fixed effects"
local j = 1
local nxt = 1
local prev = 0
while `j'<=`m'{
local n = M_nffc[1,`j'] - `prev'
if `n'>0{
local prev = M_nffc[1,`j']
matrix `mat' = M_initf[1,`nxt'..`nxt'+`n'-1]
local nxt = `nxt' + `n'
local ce: coleq(`mat')
local ce: word 1 of `ce'
local cn: colnames(`mat')
disp in gr " `ce': " in ye " `cn'"
}
local j = `j' + 1
}
disp " "
}
} /* end qui `noi' */
/* deal with inter */
global HG_inter = 0
if "`inter'"~=""{
global HG_inter=1
local j: word count `inter'
if `j'~=2{
disp in red "inter should have two arguments"
exit 198
}
local j: word 1 of `inter'
capture confirm number `j'
if _rc>0{
disp in red "arguments of inter must be numbers"
exit 198
}
global HG_l = `j'
local j: word 2 of `inter'
capture confirm number `j'
if _rc>0{
disp in red "arguments of inter must be numbers"
exit 198
}
global HG_r = `j'
}
/* initialise macros */
quietly `noi' initmacs "`nrf'" "`nip'" "`eqs'" "`geqs'" "`peqs'" "`s'" "`nats'" "`bmatrix'" "`touse'" "`dep'" "`frload'"
qui count if `touse'
if _result(1) <= 1 {
di in red "insufficient observations"
exit 2001
}
/* deal with noESt */
if "`est'"~=""{
exit 0
}
/* only use observations satisfying if and in and having nonmissing values */
preserve
quietly keep if `touse'
/* work out number of units at each level */
qui summ `wt' if `touse', meanonly
local lobs = r(sum)
tempvar cw f
qui gen double `cw' = `wt'
qui gen byte `f' = 1
matrix M_nu=J(1,$HG_tplv,0)
matrix M_nu[1,1]=`lobs'
local sortlst $HG_clus
local j = 1
local k = $HG_tplv
quietly `noi' disp in gr "number of level 1 units = " in ye `lobs'
while `j'<$HG_tplv{
*disp "sort `sortlst'"
sort `sortlst'
tokenize "`sortlst'"
local `k' " "
local sortlst "`*'"
*disp "replace cw = cw/wt`j'"
qui replace `cw' = `cw'/${HG_wt`j'}
*disp "by `sortlst': replace f=_n==1"
qui by `sortlst': replace `f' = _n==1
qui summ `cw' if `f' ==1, meanonly
local lobs = r(sum)
quietly `noi' disp in gr "number of level " `j'+1 " units = " in ye `lobs'
matrix M_nu[1,`j'+1] = `lobs'
local j = `j' + 1
local k = `k' - 1
}
/* use pweights */
if "`pw'"~=""{
local j = 1
while (`j'<=$HG_tplv){
capture confirm variable `pweight'`j' /* probability weight */
if _rc == 0 {
quietly replace ${HG_wt`j'}=${HG_wt`j'}*`pweight'`j'
}
local j = `j' + 1
}
}
/* check if weights are integer */
qui cap summ `y' if `touse' [fweight=`wt'], meanonly
if _rc>0 {
global HG_obs
local ftype pweight
disp in re "weights are non-integer"
}
else {
local lobs = M_nu[1,1]
global HG_obs obs(`lobs')
local ftype fweight
}
if "`pweight'"~=""{
quietly replace `wt' = `wt'*`wtp'
local ftype pweight
}
/* deal with from */
if "`from'"~=""{
capture qui matrix list `from' /* do not comment out this line! */
local rc=_rc
if `rc'>1{
disp in red "`from' not a matrix"
exit 111
}
tempname amat
matrix `amat' = `from'
local from "`amat'"
}
/* deal with eval */
if "`eval'"~=""{
if "`from'"==""{
disp in re "eval not valid without from option"
exit 198
}
}
/* deal with constraints (and from long) */
global HG_const = 0
if "`constra'"~=""{
global HG_const = 1
if $HG_init==0{
tempname b V
matrix `b' = nullmat(M_initf), nullmat(M_initr)
* noi matrix list `b'
if "`from'"~=""& "`long'"~=""{
local nb = colsof(`b')
local nf = colsof("`from'")
* disp "nb = " `nb'
* disp "nf = " `nf'
if "`gateaux'"~=""{
local tprf=M_nrfc[2,$HG_tplv]-M_nrfc[2,$HG_tplv-1]
local nnf = `nf' + `tprf' + 1
if `nnf'~=`nb'{
disp in re "from matrix has `nf' columns and should have " `nb'-`tprf'-1
exit 198
}
matrix `from' = `from',`b'[1,`nf'+1...]
**
* local lfix = `M_nffc'[1,colsof(`M_nffc')]
* matrix `from' = `from'[1,1..`lfix'],`b'[1,`nf'+1..`nf'+`tprf'+1],`from'[1,`lfix'+1...]
* noi matrix list `from'
}
else{
capture ml model d0 gllam_ll $HG_fixe $HG_eqs, /*
*/ noscvars waldtest(0) nopreserve missing collinear
* disp "ml init from, `skip' `copy'"
ml init `from', `skip' `copy'
matrix `from' = ML_b
}
matrix `b' = `from'
* matrix list `b'
}
global HG_coln: colnames(`b')
global HG_cole: coleq(`b')
* matrix list `b'
matrix `V' = `b''*`b'
estimates post `b' `V'
matrix `b' = e(b)
matrix makeCns `constra'
qui `noi' disp in gr "Constraints:"
qui `noi' matrix dispCns
qui `noi' disp " "
matcproc M_T M_a M_C
matrix M_inshrt = `b'*M_T
local n = colsof(M_inshrt)
qui `noi' disp "estimating `n' parameters"
local i = 1
local lst "`y'"
gen byte __0066 = 1
while `i'< `n'{
local lst `lst' "eq`i'"
local i = `i' + 1
}
global HG_eqs
matrix coleq M_inshrt = `lst'
matrix colnames M_inshrt = __0066
*matrix list M_inshrt
*matrix `b' = M_inshrt*M_T' + M_a
*matrix list `b'
if "`gateaux'"~=""{
local nf = `nf' - (`nb' - `n')
matrix `from' = M_inshrt[1,1..`nf']
}
else if "`from'"~=""&"`long'"~=""{
matrix `from' = M_inshrt
}
}
}
if "`from'"~=""{
local from "from(`from')"
}
/* deal with prior */
global HP_prior = 0
if "`prior'"!=""{
if "`noi'"!=""{ local loud "loud" }
*disp in re "prior loud is `prior' `loud'"
init_prior, `prior' `loud'
global HP_sprd = 0
}
* disp in re "HP_prior: " $HP_prior
/* deal with adapt */
global HG_adapt=0
if "`adapt'"~=""{
if $HG_free==1|($HG_gauss==0&$HG_mult==0){
disp in re "adapt can only be used with ip(g) or ip(m) option"
exit 198
}
global HG_adapt = 1
}
/* Nothing to estimate if init option and no fixed effects or level-1 variance */
if $HG_init==1&M_nffc[1,$HG_tpff]==0&$HG_lev1==0{
disp in re "Nothing to estimate"
exit 498
}
local fit = 0
if (M_nffc[1,$HG_tpff]>0|$HG_lev1>0)&$HG_init==0&"`from'"==""&$HG_comp==0{
/* initial values for fixed effects using Stata's commands */
local lnk $HG_link
if "$HG_link"=="recip"{
local lnk pow -1
}
qui `noi' disp " "
qui `noi' disp in gr "Initial values for fixed effects"
if $HG_const&$HG_init==0 {
qui `noi' disp in gr "(Not applying constraints at this point)"
}
qui `noi' disp " "
if ("$HG_famil"=="gauss")&("$HG_link"=="ident")& "`s'"==""{
tempvar yn
if "`offset'"~=""{
quietly gen double `yn' = `y' - $HG_off
}
else{
gen `yn' = `y'
}
quietly `noi' reg `yn' `indep' [`ftype'=`wt'], `constant'
matrix M_initr[1,1]=ln(_result(9))
local fit = 1
qui drop `yn'
}
else if ($HG_nolog+$HG_oth+$HG_mlog==1)&("$HG_famil"=="binom"|$HG_nolog==1|/*
*/ $HG_mlog==1)&$HG_exp==0{
local fit = 1
local mnd = 1
if "$HG_denom"~=""{
qui summ $HG_denom, meanonly
local mnd = r(mean)
}
if `mnd'>1 {
if $HG_mlog>0 {
disp in re "can't have denominator > 1 for mlogit"
exit 198
}
if ($HG_nolog>0) {
disp in re "can't have denominator > 1 for ordinal response"
exit 198
}
qui `noi' glm `y' `indep' [`ftype'=`wt'], link(`lnk') /*
*/ fam(binom `denom') `constant' `offset' `log'
}
else{
if "$HG_link"=="logit"{
qui `noi' logit `y' `indep' [`ftype'=`wt'], `constant' `offset' `log'
}
else if "$HG_link"=="probit"{
qui `noi' probit `y' `indep' [`ftype'=`wt'], `constant' `offset' `log'
}
else if "$HG_link"=="cll"{
qui `noi' cloglog `y' `indep' [`ftype'=`wt'], `constant' `offset' `log'
}
else if "$HG_link"=="ll"{
tempvar yn
qui gen `yn' = 1-`y'
qui `noi' cloglog `yn' `indep' [`ftype'=`wt'], `constant' `offset' `log'
}
else if $HG_mlog==1{
qui `noi' mlogit `y' `indep' [`ftype'=`wt'] if $HG_ind==1, `constant' `basecat' `log'
}
else if "$HG_linko"=="ologit"&"`thresh'"==""{
qui `noi' ologit `y' `indep' [`ftype'=`wt'], `offset' `log'
}
else if "$HG_linko"=="oprobit"&"`thresh'"==""{
qui `noi' oprobit `y' `indep' [`ftype'=`wt'], `offset' `log'
}
else if "$HG_linko"=="ocll"|"$HG_link"=="sprobit"|"$HG_linko"=="soprobit"|$HG_nolog>1|"`thresh'"~=""{
local fit = 0
}
else{
qui `noi' glm `y' `indep' [`ftype'=`wt'], link(`lnk') /*
*/ fam(binom `denom') `constant' `offset' `log'
local fit = 1
}
}
}
else if ("$HG_famil"=="poiss")&("$HG_link"=="log"){
qui `noi' poisson `y' `indep' [`ftype'=`wt'], `constant' `offset' `log'
local fit = 1
}
else if ("$HG_famil"=="gamma"& M_nbrf[1,1]==1){
qui `noi' glm `y' `indep' [`ftype'=`wt'], link(`lnk')/*
*/ fam(gamma) `constant' `offset' `log'
matrix M_initr[1,1]= -ln($S_E_dc)
local fit = 1
}
}
if `fit' == 0 &("`from'"==""|$HG_init==1)& (M_nffc[1,$HG_tpff]>0|$HG_lev1>0) {
/* fit level 1 model using gllamm */
/* preserve macros */
qui `noi' disp in green "(using gllamm for inital values)"
local eqs "$HG_eqs"
local tprf = $HG_tprf
local tplv = $HG_tplv
local tpi = $HG_tpi
local const = $HG_const
local link $HG_link
local linko $HG_linko
local lev1 = $HG_lev1
local ngeqs = $HG_ngeqs
local sprior = $HP_prior
tempvar keep
quietly gen int `keep' = $HG_wt1
quietly replace $HG_wt1 = `wt'
matrix `mnip' = M_nip
matrix `mnbrf' = M_nbrf
local adapt = $HG_adapt
/* change global macros */
local frm
if $HG_init==0{
global HG_const = 0
}
global HG_ngeqs = 0
if $HG_init==0{
/* scale of probit usually not identified without random effects */
global HG_link
local k: word count `link'
local kk = 1
while `kk' <= `k'{
local ll: word `kk' of `link'
if "`ll'" == "sprobit"{
global HG_link "$HG_link probit"
}
else{
global HG_link $HG_link `ll'
}
local kk = `kk' + 1
}
*disp in re "links were `link' and are $HG_link"
global HG_linko
local k: word count `linko'
local kk = 1
while `kk' <= `k'{
local ll: word `kk' of `linko'
if "`ll'" == "soprobit"{
global HG_linko "$HG_linko oprobit"
}
else{
global HG_linko "$HG_linko `ll'"
}
local kk = `kk' + 1
}
*disp in re "ordinal links were `linko' and are $HG_linko"
if $HG_lev1>0{ /* check if any of the families is the normal or gamma*/
local found = 0
local k: word count $HG_famil
local kk = 1
while `kk'<= `k'{
local ll: word `kk' of $HG_famil
if "`ll'"=="gauss"| "`ll'"=="gamma"{
local found = 1
}
local kk = `kk' + 1
}
if `found'==0{
global HG_lev1 = 0
matrix M_nbrf = (0)
}
}
}
matrix M_nip=(1,1\1,1)
if $HG_lev1>0{
global HG_eqs $HG_s1
global HG_tprf=1
global HG_tpi=1
global HP_prior=0
}
else{
global HG_eqs
global HG_tprf=0
global HG_tpi=1
}
if "`from'"~=""{
local frm `from'
}
global HG_adapt = 0
/* fit model for initial values */
global HG_tplv=1 /* Level 1 model */
local opt
if $HG_init{ /* apply constraints if init option is used */
if $HG_const==1{
tempname b V
matrix `b' = M_initf, M_initr
capture ml model d0 gllam_ll $HG_fixe $HG_eqs, /*
*/ noscvars waldtest(0) nopreserve missing collinear
*matrix list `b'
ml init `b', skip /* uses parameters needed for model above */
matrix `b' = ML_b /* unconstrained param., no random effects */
global HG_coln: colnames(`b')
global HG_cole: coleq(`b')
if "`from'"~=""& "`long'"~=""{ /* assumes copy option */
local nb = colsof(`b')
local nf = colsof(`amat')
if `nb'~=`nf'{
disp in re "from matrix must be dimension " `nb'
exit 189
}
disp in gr "(copy option assumed for from matrix)"
matrix `b' = `amat'
matrix coleq `b' = $HG_cole
matrix coln `b' = $HG_coln
}
matrix `V' = `b''*`b'
estimates post `b' `V'
matrix `b' = e(b)
matrix makeCns `constra'
qui `noi' disp in gr "Constraints:"
qui `noi' matrix dispCns
qui `noi' disp " "
matcproc M_T M_a M_C
matrix M_inshrt = `b'*M_T /* constrained parameters, no r. effects */
local n = colsof(M_inshrt)
qui `noi' disp "estimating `n' parameters"
if "`from'"~=""&"`long'"==""{
local nf = colsof(`amat')
if `n'~=`nf'{
disp in re "from matrix must be dimension " `n'
exit 189
}
matrix M_inshrt = `amat'
}
local i = 1
local lst "`y'"
gen byte __0066 = 1
while `i'< `n'{
local lst `lst' "eq`i'"
local i = `i' + 1
}
global HG_eqs
matrix coleq M_inshrt = `lst'
matrix colnames M_inshrt = __0066
local frm "from(M_inshrt)"
matrix coleq M_inshrt = `lst'
matrix colnames M_inshrt = __0066
local n = colsof(M_inshrt)
global HG_fixe (`y': `y' =__0066, nocons)
local i = 1
while `i'< `n'{
global HG_fixe $HG_fixe (eq`i': __0066, nocons)
local i = `i' + 1
}
}
local opt `options'
}
* noi
qui `noi' hglm_ml `y', /*
*/ $HG_obs `log' title("fixed effects model") /*
*/ `frm' `trace' skip `difficult' `opt' `copy' `iterate' `eval'
local fit = 1
if $HG_init==0 {
quietly `noi' ml display, level(`level') nohead
}
if $HG_init{
if $HG_error==0{
if "`eval'"~=""{
local robust
local cluster
local pw
}
noi prepare, `robust' `cluster' `pw' `dots' `noi'
* disp in re "running delmacs"
delmacs
restore
estimates repost, esample(`touse')
estimate local cmd "gllamm"
estimate local predict "gllapred"
* disp in re "running replay"
noi Replay, level(`level') `eform' `allc' `robust' `cluster' `display' `eval'
exit 0
}
}
if $HG_lev1>0{
local num=M_nbrf[1,1]
matrix `mat'=e(b)
if $HG_nats{
matrix `mat'=`mat'[1,"s1:"]
}
else{
matrix `mat'=`mat'[1,"lns1:"]
}
local i=1
while `i'<=`num'{
matrix M_initr[1,`i']=`mat'[1,`i']
local i=`i'+1
}
}
if $HG_init{
delmacs
restore
estimates repost, esample(`touse')
estimate local cmd "gllamm"
estimate local predict "gllapred"
exit 0
}
/* restore global macros */
global HG_tplv=`tplv'
global HG_eqs "`eqs'"
global HG_tprf=`tprf'
global HP_prior=`sprior'
global HG_tpi=`tpi'
global HG_link "`link'"
global HG_linko "`linko'"
global HG_ngeqs = `ngeqs'
quietly replace $HG_wt1=`keep'
matrix M_nip=`mnip'
matrix M_nbrf = `mnbrf'
global HG_const = `const'
global HG_lev1 = `lev1'
global HG_adapt = `adapt'
}
if `fit'{
/* put estimates in `b' */
local cn: colnames(M_initf)
local ce: coleq(M_initf)
matrix M_initf=e(b)
capture matrix colnames M_initf = `cn'
capture matrix coleq M_initf = `ce'
local num=M_nffc[1,$HG_tpff]
if `num'>0 {
local nn=colsof(M_initf)
if `nn'<`num'{
disp in re "variables have been dropped, can't continue"
exit 198
}
matrix M_initf=M_initf[1,1..`num']
* matrix list M_initf
}
if $HG_const==1{
matrix `b' = nullmat(M_initf), nullmat(M_initr)
matrix M_inshrt = `b'*M_T
}
if $HG_error==1{
exit
}
}
/* estimation */
*qui `noi' disp in smcl in gr "{hline 78}" _n
qui `noi' di in gr _dup(78) "-" _n
qui `noi' dis
qui `noi' dis "start running on $S_DATE at $S_TIME"
* check this:
*local skip
if $HG_const==1{
matrix coleq M_inshrt = `lst'
matrix colnames M_inshrt = __0066
local n = colsof(M_inshrt)
global HG_fixe (`y': `y' =__0066, nocons)
local i = 1
while `i'< `n'{
global HG_fixe $HG_fixe (eq`i': __0066, nocons)
local i = `i' + 1
}
}
* disp "`trace' `options' "
* disp "$HG_obs `log' `from'"
* disp "`search' `lf0' `gateaux' `skip' `difficult' `eval' "
/* means and sds for adapt */
if $HG_adapt{
local rf = 1
while `rf'<=$HG_tprf{
tempname junk
global HG_MU`rf' "`junk'"
tempname junk
global HG_SD`rf' "`junk'"
gen double ${HG_MU`rf'}=0
gen double ${HG_SD`rf'}=1
local rf2 = `rf' + 1
while `rf2' < $HG_tprf {
tempname junk
global HG_C`rf2'`rf' "`junk'"
gen double ${HG_C`rf2'`rf'}=0
local rf2 = `rf2' + 1
}
local rf = `rf' + 1
}
}
* noi capture noi
capture noi hglm_ml `y', `trace' `options' /*
*/ $HG_obs `log' title("gllamm model") `from' `iterate'/*
*/ `search' `lf0' `gateaux' `skip' `copy' `difficult' `eval'
if _rc>0{ global HG_error=1 }
qui `noi' dis "finish running on $S_DATE at $S_TIME"
qui `noi' dis " "
if $HG_error==0{
if "`eval'"~=""{ /* do not want to compute robust standard errors */
local robust
local cluster
local pw
}
noi prepare, `robust' `cluster' `pw' `dots' `noi'
* disp "running delmacs"
delmacs
* disp "restore"
restore
estimates repost, esample(`touse')
estimate local cmd "gllamm"
estimate local predict "gllapred"
* disp "running replay"
noi Replay, level(`level') `eform' `allc' `robust' `cluster' `display' `eval'
}
end
program define prepare
syntax [, ROBUST CLUSTER(varname) PWEIGHT DOTS NOISILY]
* disp "options are: `robust' `cluster' `pweight' `dots' `noisily'"
tempname b v X U
matrix `b' = e(b)
local n = colsof(`b')
matrix M_Vs = e(V)
capture matrix `v' = inv(M_Vs)
if _rc==0{
matrix symeigen `X' `U' = `v'
global HG_cn = sqrt(`U'[1,1]/`U'[1,`n'])
}
else{
global HG_cn = -1
}
if $HG_const {
matrix M_Vs = M_T*M_Vs*M_T'
}
/* deal with robust */
if "`robust'"~=""|"`cluster'"~=""|"`pweight'"~=""{
if "`cluster'"~=""{
global HG_rbcls "`cluster'"
*disp "HG_rbcls is $HG_rbcls"
local cluster cluster(`cluster')
}
* disp "calling gllarob"
qui `noisily' gllarob, first macs `cluster' `dots'
}
* disp "HG_const = " $HG_const
* disp "running remcor"
qui remcor `b'
if $HG_const {
* disp "running procstr"
qui procstr
}
end
program define hglm_ml
version 6.0
syntax varlist(min=1)[, TITLE(passthru) LF0(numlist) noLOg TRace /*
*/ OBS(passthru) FROM(string) SEarch(integer 0) Gateaux(numlist min=3 max=3) skip copy/*
*/ noDIFficult EVal ITerate(numlist) *]
*disp in re "running hglm_ml"
*disp in re "iterate: `iterate'"
if "`log'"=="" {
local log "noisily"
}
else{
local log
}
if "`trace'"~="" {
local noi "noisily"
}
parse "`varlist'", parse(" ")
local y "`1'"
tempvar mysamp
tempname b f V M_init M_initr a lnf mlnf ip deriv
local adapt = $HG_adapt
if "`from'"~=""{
matrix `M_init'=`from'
if "`eval'"~=""|`adapt'==1{
*noi disp "$HG_fixe $HG_eqs"
ml model d0 gllam_ll $HG_fixe $HG_eqs, /*
*/ noscvars waldtest(0) nopreserve missing collinear
*disp "ml init M_init, `skip' `copy'"
ml init `M_init', `skip' `copy'
matrix ML_g=ML_b
if `adapt'==0{
qui `noi' capture ml maximize, search(off) /*
*/ iterate(0) novce nooutput nowarn /* `options' */
disp in gr "log-likelihood = " in ye e(ll)
exit 0
}
else{
matrix `M_init' = ML_b
global ML_y1 `y'
noi gllam_ll 1 "`M_init'" "`lnf'" "junk" "junk" 1
}
* matrix list `M_init'
}
if "`gateaux'"~=""&$HG_free==0{
disp in re "option gateaux not allowed (ignored) for fixed integration points"
}
else if "`gateaux'"~=""&$HG_free==1{
qui `noi' disp in gr "Gateaux derivative"
if $HG_tplv>2{
disp "searching for additional point at level " $HG_tplv
}
local ll=$HG_tplv-1
local tprf=M_nrfc[2,$HG_tplv]-M_nrfc[2,`ll'] /* number of locations */
capture local mf = colsof(M_initf)
if _rc>0 {local mf = 0}
capture local mr = colsof(M_initr)
if _rc>0 {local mr = 0}
if $HG_const{
local nreq = colsof(M_inshrt) - `tprf' - 1
local cn: colnames(M_inshrt)
local ce: coleq(M_inshrt)
}
else{
local nreq = `mf'+`mr'-`tprf'-1
}
if `nreq'~=colsof(`M_init'){
disp in re "initial value vector should have length `nreq'"
matrix list `from'
global HG_error=1
exit 198
}
*set trace on
local l = `mr' - `tprf'-1 /* length of previous M_initr */
local locp = $HG_befB - `mf'
local beg = `locp'-`tprf' /* position of first new mass-point parameter */
* matrix list M_initr
matrix `a' = M_initr[1,`beg'..`locp'] /* new mass-point parameters */
* noi disp "new mass-point par"
* matrix list `a'
if $HG_cip==0{ /* new point is one before last since last has no prob. par. */
local locp = `locp' - `tprf'
}
local befB = $HG_befB - `tprf' - 1 /* befB for previous parameter vector */
global HG_befB
if `nreq' > `befB' {
matrix `M_init' = `M_init'[1,1..`befB'],`a',`M_init'[1,`befB'+1...]
}
else {
matrix `M_init' = `M_init'[1,1..`befB'],`a'
}
* matrix list `M_init'
local locp = `mf' + `locp'
*disp "position of new p-parameter = " `locp'
local nreq = `locp' - `tprf' -1
*disp "position of first new location parameter = " `nreq'+1
if $HG_cip==0{
* new point must be one before last since new probability tiny
local jl = 1
while `jl'<=`tprf'{
matrix `M_init'[1,`locp'+`jl']=`M_init'[1,`nreq'+`jl']
local jl = `jl' + 1
}
}
*matrix list `M_init'
tokenize "`gateaux'"
local min = `1'
local max = `2'
local num = `3'
local stp = (`max'-`min')/(`num'-1)
matrix `M_init'[1,`locp']=-6 /* mass of new masspoint */
scalar `mlnf'=0
matrix `ip'=M_ip
matrix `ip'[1,1]=1
*recursive loop
matrix `ip'[1,`tprf']=1
local k = `nreq' + `tprf'
matrix `M_init'[1,`k']=`min'
local nxtrf = `tprf'+1
matrix `ip'[1,`nxtrf']=`num'
local rf = `tprf'
while `rf' <= `tprf'{
*reset ip up to random effect `rf'
while (`rf'>1) {
local rf = `rf'-1
matrix `ip'[1,`rf'] = 1
local k = `nreq' + `rf'
matrix `M_init'[1,`k']=`min'
}
* update lowest digit
local rf = 1
while `ip'[1,`rf'] <= `num'{
local k = `nreq' + `rf'
matrix `M_init'[1,`k'] = `min' + (`ip'[1,`rf']-1)*`stp'
* matrix list `M_init'
global ML_y1 `y'
gllam_ll 0 "`M_init'" "`lnf'"
noi di in gr "." _c
* noisily disp "likelihood=" `lnf'
if (`lnf'>`mlnf'|`mlnf'==0)&`lnf'~=.{
scalar `mlnf'=`lnf'
matrix M_initr=`M_init'
}
matrix `ip'[1,`rf'] = `ip'[1,`rf'] + 1
}
matrix `ip'[1,`rf'] = `num' /* lowest digit has reached the top */
while `ip'[1,`rf']==`num'&`rf'<=`tprf'{
local rf = `rf' + 1
}
* rf is first r.eff that is not complete or rf>nrf
if `rf'<=`tprf'{
matrix `ip'[1,`rf'] = `ip'[1,`rf'] + 1
local k = `nreq' + `rf'
matrix `M_init'[1,`k'] = `min' + (`ip'[1,`rf']-1)*`stp'
}
}
if "`lf0'"~=""{
local junk: word 2 of `lf0'
* disp in re "junk = " `junk'
* disp in re "mlnf - lf0 is " `mlnf' " - " `junk'
scalar `deriv' = `mlnf'-`junk'
disp " "
disp in ye "maximum gateaux derivative is " `deriv'
* matrix list `M_initr'
if `deriv'<0.00001{
disp in re "maximum gateaux derivative less than 0.00001"
global HG_error=1
exit
}
}
else{
disp in ye "no gateaux derivarives could be calculated without lf0() option"
matrix list `M_initr'
}
matrix `M_init' = M_initr
* starting log odds for new location
matrix `M_init'[1,`locp']=-3
if $HG_const{
matrix colnames `M_init' = `cn'
matrix coleq `M_init' = `ce'
}
* matrix list `M_init'
} /* end if gateaux */
} /* end if from */
else{ /* no from() */
if "`gateaux'"~=""{
disp in red "gateaux can't be used without option from()"
exit 198
}
if "`eval'"~=""{
disp in red "eval option only allowed with from()"
exit 198
}
capture matrix `M_init'=M_initf
if $HG_tprf|$HG_lev1>1{
matrix `M_initr'=M_initr
local max=3
local min=0
scalar `mlnf' = 0
local f1= M_nbrf[1,1]+1
local l=colsof(M_initr)
local m=1
if `search'>1{
if $HG_const==1{
disp in re "search option does not work yet with constraints"
exit 198
}
else{
qui `noi' disp in gr /*
*/ "searching for initial values for random effects"
qui `noi' disp "likelihood:"
}
}
while `m'<=`search'{ /* begin search */
* matrix list M_initr
matrix `a'=`M_init',M_initr
*matrix list `a'
global ML_y1 `y'
noisily gllam_ll 0 "`a'" "`lnf'"
qui `noi' disp in ye %10.0g `lnf' " " _c
if mod(`m',6)==0 {qui `noi' disp }
*qui `noi' disp "likelihood=" `lnf'
if (`lnf'>`mlnf'|`m'==1)&`lnf'~=. {
scalar `mlnf'=`lnf'
matrix `M_initr'=M_initr
}
local k=`f1'
while `k'<=`l'{
matrix M_initr[1,`k']=`min' + (`max'-`min')*uniform()
local k=`k'+1
}
local m = `m' + 1
} /* end search */
matrix `M_init' = nullmat(`M_init'),`M_initr'
}
if $HG_const{
matrix `M_init' = M_inshrt
}
}
if "`difficult'"~=""{
local difficu /* erase macro */
}
else{
local difficu "difficult" /* default */
}
* disp "$HG_fixe $HG_eqs, init(`M_init',`skip') "
* disp "`lf0' `obs' `trace' `difficu' `options'"
*matrix list `M_init'
if "`lf0'"~="" { local lf0 "lf0(`lf0')" }
* matrix list `M_init'
if `adapt'{
tempname pa1
tempname pa2
tempname ad1
tempname ad2 ad0
* global HG_adapt=0
global ML_y1 `y'
if "`from'"==""{
noi gllam_ll 1 "`M_init'" "`lnf'" "junk" "junk" 1
}
scalar `ad2' = `lnf'
scalar `ad1' = 0
local i = 2
qui `log' di in gr _n "Running adaptive quadrature"
qui `noi' di in gr _dup(78) "-" _n "Iteration 0 of adaptive quadrature:"
*qui `noi' di in smcl in gr "{hline 78}" _n "Iteration 0 of adaptive quadrature:"
qui `noi' di in gr "Initial parameters:" _n
qui `noi' mat list `M_init', noheader noblank format(%9.0g)
/* first calculation of adaptive quadrature points ==> ad2 */
global HG_adapt=1
qui `noi' disp in gr _n "Updated log likelihood:"
qui `noi' disp in ye %10.0g `ad2' " " _c
while abs((`ad1'-`ad2')/`ad2')>1e-8&`i'<120&`ad2'~=.{
scalar `ad1' = `ad2'
noi gllam_ll 1 "`M_init'" "`ad2'" "junk" "junk" 1
qui `noi' disp in ye %10.0g `ad2' " " _c
if mod(`i',6)==0 {qui `noi' disp }
local i = `i' + 1
}
if `i'>=120{
disp in re "Convergence not achieved: try with more quadrature points"
global HG_error=1
exit
}
if `ad2'==.{
disp in re "Log-likelihood cannot be computed"
global HG_error=1
exit
}
qui `noi' di in gr _n _col(52) "log likelihood = " in ye %10.0g /*
*/ scalar(`ad2')
if "`noi'"==""{
qui `log' di in gr "Iteration 0: log likelihood = " in ye %10.0g /*
*/ scalar(`ad2')
}
if "`eval'"~=""{
qui `noi' di in gr _dup(78) "-"
*qui `noi' di in smcl in gr "{hline 78}"
di in gr "log likelihood = " in ye %10.0g /*
*/ scalar(`ad2') _n
qui `noi' capture ml maximize, search(off) /*
*/ iterate(0) novce nooutput nowarn /* `options' */
*delmacs
*exit 1
exit 0
}
if "`iterate'"~=""{
local iter=`iterate'
}
else{
local iter=150
}
global HG_adapt=1
/* loop, update parameters then adaptive quadrature */
capture `log' ml model d0 gllam_ll $HG_fixe $HG_eqs, /*
*/ noscvars `lf0' `obs' `title' /*
*/ waldtest(0) nopreserve missing collinear
if `iter'==0{
qui `noi' di in gr _dup(78) "-"
disp in green "Adaptive quadrature has not converged"
ml init `M_init', `skip' `copy'
capture ml maximize, search(off) `difficu' /*
*/ `trace' iterate(0) nolog /*
*/ nooutput noclear /* `options' */
exit 0
}
local it = 0
scalar `ad0' = `ad2'*1.2
scalar `pa2' = 0
local only1 iteronly1
local fst = 0
while abs((`ad0'-`ad2')/`ad0')>1e-6&`it'<`iter'{
scalar `ad0' = `ad2'
local it = `it' + 1
qui `noi' di in gr _dup(78) "-" _n "Iteration `it' of adaptive quadrature:"
*qui `noi' di in smcl in gr "{hline 78}" _n "Iteration `it' of adaptive quadrature:"
qui `noi' disp in gr "Updated parameters:" _n
/* update parameters ==> pa2 */
ml init `M_init', `skip' `copy'
*ml report
* noi capture noi
capture ml maximize, search(off) `difficu' /*
*/ `trace' iterate(1) nolog /*
*/ nooutput noclear `only1' hessian gradient /* `options' */
*
local rc = _rc
if `rc' == 198&`fst'==0{
local only1
*noi capture noi
capture ml maximize, search(off) `difficu' /*
*/ `trace' iterate(1) nolog /*
*/ nooutput noclear `only1' /* `options' technique(bfgs) */
local rc = _rc
local fst = 1
}
if `rc'>1 {
di in red "(error occurred in ML computation)"
di in red "(use trace option and check correctness " /*
*/ "of initial model)"
global HG_error=1
exit `rc'
}
qui `noi' mat list $ML_b, noheader noblank format(%9.0g)
qui `noi' di /* blank line */
scalar `pa1' = `pa2'
scalar `pa2' = e(ll)
matrix `M_init'=e(b)
/* update adaptive quadrature ==> ad2 */
local j = 2
scalar `ad1' = `pa2'
qui `noi' disp in gr "Updated log likelihood: "
qui `noi' disp in ye %10.0g `ad1' " " _c
while (abs((`ad1'-`ad2')/`ad2')>1e-8)&`j'<120&`ad2'~=.{
global ML_y1 `y'
scalar `ad1' = `ad2'
noi gllam_ll 1 "`M_init'" "`ad2'" "junk" "junk" 1
qui `noi' disp in ye %10.0g `ad2' " " _c
if mod(`j',6)==0 { qui `noi' disp }
local j = `j' + 1
}
if `ad2'==.{
disp in re "Log-likelihood cannot be computed"
global HG_error=1
exit
}
qui `noi' di in gr _n _col(52) "log likelihood = " in ye %10.0g /*
*/ scalar(`ad2')
if "`noi'"==""{
qui `log' di in gr "Iteration " `it' ": log likelihood = " in ye %10.0g /*
*/ scalar(`ad2')
}
*qui `noi' disp in gr "log-likelihood is " in ye `ad2' in gre /*
*/ " and was " in ye `ad0' in gre ", relative change: " /*
*/ in ye abs((`ad2'-`ad0')/`ad0')
}
qui `noi' di in gr _dup(78) "-" _n
*qui `noi' di in smcl in gr "{hline 78}" _n
*tempname v
*capture matrix `v'=e(V)
*capture matrix `v' = inv(`v')
*if _rc>0{
if `it'==`iter'&((`ad0'-`ad2')/`ad0')>1e-6 {
disp in green "Adaptive quadrature did not converge in `iter' iterations"
exit 0
}
qui `log' disp in gr _n _n "Adaptive quadrature has converged, running Newton-Raphson" _c
ml init `M_init', skip copy
capture `log' ml maximize, search(off) `difficu' /*
*/ `trace' nooutput iterate(`iter') /* `options' */
local rc = _rc
if `rc'>1 {
di in red "(error occurred in ML computation)"
di in red "(use trace option and check correctness " /*
*/ "of initial model)"
global HG_error=1
exit `rc'
}
*}
}
else{ /* not adaptive */
if "`iterate'"~=""{
local iter "iterate(`iterate')"
}
else{
local iter
}
capture `log' ml model d0 gllam_ll $HG_fixe $HG_eqs, /*
*/ maximize search(off) /*
*/ init(`M_init', `skip' `copy') noscvars `lf0' `obs' `title' `trace' /*
*/ waldtest(0) nopreserve missing `difficu' collinear `iter'/* `options' */
* technique(bfgs) gtol(1e-4)
}
local rc = _rc
if `rc'>1 {
di in red "(error occurred in ML computation)"
di in red "(use trace option and check correctness " /*
*/ "of initial model)"
global HG_error=1
exit `rc'
}
if `rc'==1 {
di in red /*
*/ "(Maximization aborted)"
delmacs
global HG_error=1
exit 1
}
else if $HG_error==1{
disp in red "some error has occurred"
exit
}
end
program define lnkfm
version 6.0
args link fam
global S_1 /* link */
global S_2 /* family */
lnk "`1'"
fm "`2'"
if "$S_1" == "" {
if "$S_2" == "gauss" { global S_1 "ident" }
if "$S_2" == "poiss" { global S_1 "log" }
if "$S_2" == "binom" { global S_1 "logit" }
if "$S_2" == "gamma" { global S_1 "recip" }
}
/*
if ("$S_1"=="mlogit"|"$S_1"=="smlogit")&"$S_2"~="binom"{
disp in red "mlogit link must be combined with binomial probability"
exit 198
}
*/
if ("$S_1"=="mlogit"|"$S_1"=="smlogit"|"$S_1"=="ologit"|"$S_1"=="oprobit"|"$S_1"=="soprobit"|"$S_1"=="ocll"){
global S_2
}
end
program define fm
version 6.0
args fam
local f = lower(trim("`fam'"))
local l = length("`f'")
if "`f'" == substr("gaussian",1,max(`l',3)) { global S_2 "gauss" }
else if "`f'" == substr("normal",1,max(`l',3)) { global S_2 "gauss" }
else if "`f'" == substr("poisson",1,max(`l',3)) { global S_2 "poiss" }
else if "`f'" == substr("binomial",1,max(`l',3)) { global S_2 "binom" }
else if "`f'" == substr("gamma",1,max(`l',3)) { global S_2 "gamma" }
else if "`f'" != "" {
noi di in red "unknown family() `fam'"
exit 198
}
if "$S_2" == "" {
global S_2 "gauss"
}
end
program define lnk
version 6.0
args link
local f = lower(trim("`link'"))
local l = length("`f'")
if "`f'" == substr("identity",1,max(`l',2)) { global S_1 "ident" }
else if "`f'" == substr("log",1,max(`l',3)) { global S_1 "log" }
else if "`f'" == substr("logit",1,max(`l',4)) { global S_1 "logit" }
else if "`f'" == substr("mlogit",1,max(`l',3)) { global S_1 "mlogit" }
else if "`f'" == substr("smlogit",1,max(`l',3)) { global S_1 "smlogit" }
else if "`f'" == substr("ologit",1,max(`l',3)) { global S_1 "ologit" }
else if "`f'" == substr("oprobit",1,max(`l',3)) { global S_1 "oprobit" }
else if "`f'" == substr("probit",1,max(`l',3)) { global S_1 "probit"}
else if "`f'" == substr("ocll",1,max(`l',3)) { global S_1 "ocll"}
else if "`f'" == substr("cll",1,max(`l',3)) { global S_1 "cll"}
else if "`f'" == substr("ll",1,max(`l',2)) { global S_1 "ll"}
else if "`f'" == substr("sprobit",1,max(`l',3)) { global S_1 "sprobit"}
else if "`f'" == substr("soprobit",1,max(`l',3)) { global S_1 "soprobit"}
else if "`f'"==substr("reciprocal",1,max(`l',3)) { global S_1 "recip" }
else if "`f'" != "" {
noi di in red "unknown link() `link'"
exit 198
}
end
program define delmacs, eclass
version 6.0
/* deletes all global macros and matrices and store some results in e()*/
tempname var
if "$HG_tplv"==""{
* macros already gone
exit
}
local nrfold = M_nrfc[2,1]
local lev = 2
while (`lev'<=$HG_tplv){
local i2 = M_nrfc[2,`lev']
local i1 = `nrfold'+1
local i = `i1'
local nrfold = M_nrfc[2,`lev']
local n = M_nrfc[1,`lev']
local n = M_nip[2,`n']
capture est matrix zps`n' M_zps`n'
while `i' <= `i2'{
local n = M_nip[2,`i']
capture est matrix zlc`n' M_zlc`n'
capture est matrix zps`n' M_zps`n'
local i = `i' + 1
}
local lev = `lev' + 1
}
if $HG_free==0&$HG_init==0{
est matrix chol CHmat
}
if $HG_free{
est matrix mnp M_np
}
est matrix nrfc M_nrfc
est matrix nffc M_nffc
est matrix nbrf M_nbrf
est matrix nu M_nu
capture est matrix Vs M_Vs
capture est matrix mresp M_resp
capture est matrix mrespm M_respm
capture est matrix frld M_frld
if $HG_ngeqs>0{
est matrix mngeqs M_ngeqs
}
matrix drop M_ip
est matrix nip M_nip
capture est matrix mb M_b
matrix drop M_znow
capture matrix drop M_initf
capture matrix drop M_initr
capture matrix drop M_chol
capture est matrix mb M_b
est matrix olog M_olog
capture est matrix moth M_oth
if $HG_const == 1{
capture drop __0066
est matrix a M_a
* est matrix C M_C
est matrix T M_T
est local coln $HG_coln
est local cole $HG_cole
global HG_coln
global HG_cole
}
/* globals defined in gllam_ll */
local i=1
while (`i'<=$HG_tpff){
global HG_xb`i'
local i= `i'+1
}
local i = 1
while (`i'<=$HG_tprf){
global HG_s`i'
local i= `i'+1
}
local i = 1
while (`i'<=$HG_tplv){
global HG_wt`i'
local i = `i' + 1
}
if $HG_adapt{
macro drop HG_zuoff
macro drop HG_SD*
macro drop HG_MU*
macro drop HG_E*
macro drop HG_V*
macro drop HG_C*
}
macro drop HG_zip
macro drop HG_lzpr
est local nats=$HG_nats
global HG_nats
est local noC=$HG_noC
global HG_noC
est local noC1=$HG_noC1
global HG_noC1
global HG_noC2
est local adapt=$HG_adapt
global HG_adapt
est local const = $HG_const
global HG_const
global HG_fixe
est local inter = $HG_inter
global HG_inter
global HG_dots
est local ngeqs = $HG_ngeqs
global HG_ngeqs
est local nolog = $HG_nolog
if $HG_nolog>0{
est local k_eform = 1 /* controls how many eqns are exponentiated */
}
else{
est local k_eform = $HG_tpff
}
global HG_nolog
est local ethr = $HG_ethr
global HG_ethr
est local mlog = $HG_mlog
global HG_mlog
est local smlog = $HG_smlog
global HG_smlog
global HG_lvolo
est local oth = $HG_oth
global HG_oth
est local lev1 = $HG_lev1
global HG_lev1
est local bmat = $HG_bmat
global HG_bmat
est local tplv = $HG_tplv
global HG_tplv
est local tprf = $HG_tprf
global HG_tprf
est local prior = $HP_prior
if $HP_prior == 1{
local a_ll = `e(ll)' - $HP_res
est local a_ll = `a_ll'
est local lpr = $HP_res
global HP_res
if $HP_invga==1{
est local invga $HP_invga
est local shape $shape
est local rate $rate
global HP_invga
global shape
global rate
}
if $HP_invwi==1{
est local invwi $HP_invwi
est local df $df
est matrix scale scale
global HP_invwi
global df
}
if $HP_foldt==1{
est local foldt $HP_foldt
est local df $df
est local scale $scale
est local location $location
global HP_foldt
global df
global scale
global location
}
if $HP_logno==1{
est local logno $HP_logno
est local meanlog $meanlong
est local sdlog $sdlog
global HP_logno
global meanlog
global sdlog
}
if $HP_gamma==1{
est local gamma $HP_gamma
est local scale $HP_scale
est local var $HP_var
est local shape $HP_shape
global HP_gamma
global HP_scale
global HP_var
global HP_shape
}
if $HP_corre==1{
est local corre $HP_corre
est local alpha $alpha
est local beta $beta
global HP_corre
global alpha
global beta
}
if $HP_boxco==1{
est local boxdo $HP_boxco
est local scale $scale
est local lambda $lambda
global HP_boxco
global scale
global lambda
}
if $HP_spect==1{
est local spect $HP_spect
est local alpha $alpha
est local beta $beta
global HP_spect
global alpha
global beta
}
if $HP_wisha==1{
est local wisha $HP_wisha
est local df $df
est matrix scale scale
global HP_wisha
global df
}
}
global HP_prior
est local tpi = $HG_tpi
global HG_tpi
est local tpff = $HG_tpff
global HG_tpff
est local clus "$HG_clus"
global HG_clus
est local weight "$HG_weigh"
global HG_weigh
est local pweight "$HG_pwt"
global HG_pwt
global which
global HG_gauss
est local free = $HG_free
global HG_free
est local mult = $HG_mult
global HG_mult
est local cip = $HG_cip
est local famil "$HG_famil"
global HG_famil
est local link "$HG_link"
global HG_link
est local linko "$HG_linko"
global HG_linko
capture est local exp $HG_exp
global HG_exp
capture est local expf $HG_expf
global HG_expf
est local lv "$HG_lv"
global HG_lv
est local fv "$HG_fv"
global HG_fv
global HG_nump
global HG_eqs
global HG_obs
est local offset "$HG_off"
global HG_off
est local denom "$HG_denom"
global HG_denom
est local cor = $HG_cor
global HG_cor
est local s1 "$HG_s1"
global HG_s1
capture est local init $HG_init
global HG_init
capture est local ind "$HG_ind"
global HG_ind
capture est local comp $HG_comp
global HG_comp
capture est local coall "$HG_coall"
global HG_coall
capture est local cn = $HG_cn
global HG_cn
capture est local robclus "$HG_rbcls"
global HG_rbcls
global HG_befB
global HG_cip
end
program define initmacs
version 6.0
/* defines all global macros */
args nrf nip eqs geqs peqs s nats bmatrix touse dep frload
tempname mat
disp " "
disp in gr "Random effects information for" in ye " $HG_tplv" in gr " level model"
*disp in smcl in gr "{hline 78}" _n
di in gr _dup(78) "-" _n
/* deal with nrf */
matrix M_nrfc=J(2,$HG_tplv,1)
if "`nrf'"==""|$HG_free|$HG_mult{
local k=1
while (`k'<=$HG_tplv){
matrix M_nrfc[1,`k']=`k'
matrix M_nrfc[2,`k']=`k'
local k=`k'+1
}
}
if "`nrf'"~=""{
local greater = 0
local k: word count `nrf'
if `k'~=$HG_tplv-1 {
if $HG_tplv==1{
disp in red "option nrf is meaningless for 1-level model"
}
else{
disp in red "option nrf() does not contain " $HG_tplv-1 " argument(s)"
}
exit 198
}
parse "`nrf'", parse(" ")
local k=2
while (`k'<=$HG_tplv){
matrix M_nrfc[2,`k']=`1'
if `1'>1{
local greater=1
}
local k=`k'+1
mac shift
}
/* make cumulative */
local k=2
while (`k'<=$HG_tplv){
matrix M_nrfc[2,`k']=M_nrfc[2,`k'-1]+M_nrfc[2,`k']
if $HG_free==0&$HG_mult==0{matrix M_nrfc[1,`k']=M_nrfc[2,`k']}
local k=`k'+1
}
if `greater'>0{
if "`eqs'"==""{
disp in re "eqs() option required"
exit 198
}
}
}
* matrix list M_nrfc
global HG_tprf=M_nrfc[2,$HG_tplv] /* number of random effects */
global HG_tpi=M_nrfc[1,$HG_tplv] /* number of integration loops + 1 */
if $HG_tplv==$HG_tprf{
if $HG_cor==0{
disp "option nocorrel ignored because no multiple r. effects per level"
}
}
/* deal with nip and set up zloc and zps */
if "`nip'"~=""{
local k: word count `nip'
if `k'==1{
if `nip' == 1{
matrix M_nip=J(2,$HG_tprf,1)
if $HG_free {
if $HG_cip==1 {
global HG_init=1
}
}
else{
disp in re "(co)variances of latent variables will not be identified with nip(1)"
ghquad 1
}
}
}
if `k'>1 | $HG_tpi == 2 {
if `k'~=$HG_tpi-1{
disp in red "option nip() has `k' arguments, need 1 or " $HG_tpi-1
exit 198
}
matrix M_nip=J(2,$HG_tprf,1)
local i=1
while `i'<$HG_tpi{
local k: word `i' of `nip'
local l = `i' + 1
matrix M_nip[1,`l']= `k'
if $HG_mult{
* disp in re "k = `k'"
local n = M_nrfc[2,`l'] - M_nrfc[2,`l'-1]
if `n'>1 {
mint `n' `k'
matrix M_nip[1,`l'] = $S_1
}
else{
local kk = (`k' + 1)/2
if int(`kk')~=`kk'{
disp in re "arguments in nip() option must be odd with ip(m)"
exit 198
}
ghquad `kk'
matrix M_nip[1,`l']= `kk'
}
}
else if $HG_free==0{
if $HG_gauss{
ghquad `k'
}
else{
lebesque `k'
}
}
local i = `i' + 1
} /* end i */
}
else{ /* one argument given for more than one loop */
matrix M_nip=J(2,$HG_tprf,`nip')
matrix M_nip[1,1] = 1
if $HG_mult{
local l = 2
while `l' <= $HG_tpi{
local n = M_nrfc[2,`l'] - M_nrfc[2,`l'-1]
if `n'>1{
mint `n' `nip'
matrix M_nip[1,`l'] = $S_1
}
else{
local kk = (`nip' + 1)/2
if int(`kk')~=`kk'{
disp in re "arguments in nip() option must be odd with ip(m)"
exit 198
}
ghquad `kk'
matrix M_nip[1,`l']= `kk'
}
local l = `l' + 1
}
}
else if $HG_free==0{
if $HG_gauss{
ghquad `nip'
}
else{
lebesque `nip'
}
}
}
}
else{ /* no nip argument given */
matrix M_nip=J(2,$HG_tprf,8)
matrix M_nip[1,1] = 1
if $HG_mult{
local l = 2
while `l' <= $HG_tpi{
local n = M_nrfc[2,`l'] - M_nrfc[2,`l'-1]
if `n'>1{
sphern `n'
matrix M_nip[1,`l'] = $S_1
}
else{
matrix M_nip[1,`l'] = 8
ghquad 8
}
local l = `l' + 1
}
}
else if $HG_free==0{
if $HG_gauss{
ghquad 8
}
else{
lebesque 8
}
}
}
local i = M_nrfc[2,1]+1
while `i'<= $HG_tprf{
if $HG_free{
matrix M_nip[2,`i'] = `i'
}
else{
matrix M_nip[2,`i'] = M_nip[1,`i']
}
local i = `i' + 1
}
* noi matrix list M_nip
capture matrix drop M_initr
*matrix M_zlc8 = J(1,8,1)
*matrix M_zps8 = J(1,8,ln(1/8))
/* deal with Eqs */
matrix M_frld = J(1,$HG_tprf,0)
local depv `dep'
matrix M_nbrf=(0)
global HG_eqs
global HG_nats = 0
local lns1 lns1
local log log
if $HG_lev1>0{
if "`nats'"~=""{
global HG_nats = 1
local lns1 s1
local log
}
disp in gr "***level 1 equation:"
if "`s'"~=""{
eq ? "`s'"
local vars "$S_1"
markout `touse' `vars'
global HG_eqs "$HG_eqs (`lns1': `depv' `vars',nocons)"
global HG_s1 "(`lns1': `depv' `vars',nocons)"
}
else{
local vars "_cons"
global HG_eqs "$HG_eqs (`lns1': `depv')"
global HG_s1 "(`lns1': `depv')"
}
local depv
disp " "
if $HG_lev1==1{disp in gr " `log' standard deviation"}
else if $HG_lev1==2{disp in gr " `log' coefficient of variation"}
else if $HG_lev1==3{disp in gr " `log'(sqrt(phi))"}
disp in ye " `lns1': `vars'"
local num: word count `vars'
matrix M_nbrf=(`num')
matrix `mat'=J(1,`num',-1)
matrix colnames `mat'=`vars'
matrix coleq `mat'=`lns1'
matrix M_initr=nullmat(M_initr),`mat'
}
else{
matrix M_nbrf=(0)
if "`s'"~=""{
disp in re "s() option ignored because families do not include dispersion parameters"
}
if "`nats'"~=""{
disp in re "nats option ignored because families do not include dispersion parameters"
}
}
matrix M_np = J(1,$HG_tpi,0)
if "`peqs'" ~= ""{
local k: word count `peqs'
if $HG_free == 0 {
disp in re "peqs() argument meaningless for quadrature estimation, ignored"
}
else if `k'~=$HG_tpi-1{
disp in red `k' " equations specified for prior probabilities: `peqs', need" $HG_tpi - 1
exit 198
}
global HG_noC1 = $HG_noC2
}
if "`eqs'"~=""{
local k: word count `eqs'
if `k'~=$HG_tprf-1{
disp in red `k' " equations specified: `eqs', need " $HG_tprf-1
exit 198
}
* check that they are equations and find number of variables in each: nbrf
local lev=2
local l=1
local ic=0
while (`lev'<=$HG_tplv){
disp " "
local m=$HG_tplv-`lev'+1
local clusnam: word `m' of $HG_clus
disp " "
disp in gr "***level `lev' (" in ye "`clusnam'" in gr ") equation(s):"
if $HG_init==1{
di in gr "(init option: parameters will not be estimated)"
di " "
}
local clusnam=substr("`clusnam'",1,3)
local lv = `lev'-1
local clusnam "`clusnam'`lv'_"
local i1=M_nrfc[2, `lev'-1]
local j1=M_nrfc[2, `lev']
local nrf=`j1'-`i1'
disp " (`nrf' random effect(s))"
disp " "
local rfl = 1
/* MASS POINTS */
if $HG_free {
tempname pmat
if $HG_cor==0{
disp "option nocorrel irrelevant for free masses"
}
local k = 1
local nloc = M_nip[1, `lev']
if $HG_cip{ local nloc = `nloc' - 1}
* new
local pnum = 0
local pvars _cons
matrix `pmat' = J(1,1,0)
if "`peqs'"~=""{
local levm = `lev' - 1
local peqn: word `levm' of `peqs'
eq ? "`peqn'"
local pvars "$S_1"
markout `touse' `pvars'
local pnum: word count `pvars'
matrix M_np[1,`lev'] = `pnum' + 1
matrix `pmat' = J(1, `pnum', 0)
}
matrix colnames `pmat' = `pvars'
* end new
while `k' <= `nloc'{
disp " "
disp in gre "class `k'"
local j = `i1'
while `j'< `j1'{
local eqnam: word `j' of `eqs'
eq ? "`eqnam'"
local vars "$S_1"
markout `touse' `vars'
local num: word count `vars'
local ex = 0
if "`frload'"~=""{
local nex: word count `frload'
local iex = 1
while `iex'<=`nex'{
local aex: word `iex' of `frload'
if `aex' == `j'{
local ex = 1
}
local iex = `iex' + 1
}
if `ex'{
matrix M_frld[1,`j'+1] = 1
local num = `num' + 1
}
}
matrix `mat'=(`num')
matrix M_nbrf=M_nbrf,`mat'
if (`num'>1){
parse "`vars'", parse(" ")
local vars1 "`1'"
if `k'==1{
if `ex'==0{
mac shift
}
local vars2 "`*'"
local eqnaml "`clusnam'`rfl'l"
eq "`eqnaml': `vars2'"
eq ? "`eqnaml'"
disp " "
disp in gr " lambdas for random effect " in ye `j'
disp in ye " `eqnaml': `vars2'"
global HG_eqs "$HG_eqs (`eqnaml': `depv' `vars2', nocons)"
local depv
local num=`num'-1
* initial loading on masspoints
local lod = 1.1 + (`j'-1)*(-1)^(`j')/5
matrix `mat'=J(1,`num',`lod')
matrix colnames `mat'= `vars2'
matrix coleq `mat'=`eqnaml'
matrix M_initr = nullmat(M_initr), `mat'
}
}
else{local vars1 `vars'}
disp " "
disp in gr " location for random effect " in ye `j'
local eqnam "z`lev'_`j'_`k'"
if `nrf'==1{
local eqnam "z`lev'_1_`k'"
}
eq "`eqnam'":`vars1'
eq ? "`eqnam'"
disp in ye " `eqnam': `vars1'"
global HG_eqs "$HG_eqs (`eqnam': `depv' `vars1', nocons)"
local depv
markout `touse' `vars1'
* initial locations of mass points
*local val = int((`k'+1)/2)*(-1)^`k'/10
local val = int((`k'+1)/2)*(-1)^`k'
matrix `mat'=(`val')
matrix colnames `mat'=`vars1'
matrix coleq `mat'=`eqnam'
matrix M_initr=nullmat(M_initr),`mat'
local j = `j' + 1
local rfl = `rfl' + 1
}
if `k'< M_nip[1, `lev']{
local eqnam "p`lev'_`k'"
eq "`eqnam'":
eq ? "`eqnam'"
disp " "
disp in gr " log odds for level " in ye `lev'
if `pnum'>0{
disp in ye " `eqnam': `pvars' _cons"
global HG_eqs "$HG_eqs (`eqnam':`pvars')"
matrix coleq `pmat'=`eqnam'
matrix M_initr=nullmat(M_initr),`pmat'
}
else{
disp in ye " `eqnam': _cons"
global HG_eqs "$HG_eqs (`eqnam': `depv')"
local depv
* initial log odds for masspoints
}
* set constant
matrix `mat'=(-.4)
matrix colnames `mat'=_cons
matrix coleq `mat'=`eqnam'
matrix M_initr=nullmat(M_initr),`mat'
}
local k = `k' + 1
}
* matrix list M_initr
* disp "$HG_eqs"
}
/* STD DEVS */
else{
local j = `i1'
while (`j'<`j1'){
local eqnam: word `l' of `eqs'
eq ? "`eqnam'"
local vars "$S_1"
local num: word count `vars'
local ex = 0
if "`frload'"~=""{
local nex: word count `frload'
local iex = 1
while `iex'<=`nex'{
local aex: word `iex' of `frload'
if `aex' == `j'{
local ex = 1
}
local iex = `iex' + 1
}
if `ex'{
matrix M_frld[1,`j'+1] = 1
local num = `num' + 1
}
}
matrix `mat'=(`num')
matrix M_nbrf=M_nbrf,`mat'
markout `touse' `vars'
if "`vars'"==""{ local vars "_cons"}
if `num'>1{
* vars1 is variable of first loading (fix at one)
parse "`vars'", parse(" ")
local vars1 "`1'"
if `ex'==0{
mac shift
}
local vars "`*'"
local eqnaml "`clusnam'`rfl'l"
eq "`eqnaml'": `vars'
eq ? "`eqnaml'"
disp " "
disp in gr " lambdas for random effect " in ye `j'
disp in ye " `eqnaml': `vars'"
global HG_eqs "$HG_eqs (`eqnaml': `depv' `vars', nocons)"
local depv
* initial values of loadings
local lod = 1.1 + (`j'-1)*(-1)^(`j')/5 /*different loading for diff r.eff*/
matrix `mat'=J(1,`num'-1,`lod')
matrix colnames `mat'=`vars'
matrix coleq `mat'=`eqnaml'
matrix M_initr=nullmat(M_initr),`mat'
}
else{
local vars1 `vars'
}
* variance
local eqnam "`clusnam'`rfl'"
eq "`eqnam'": `vars1'
if `nrf'==1|$HG_cor==0{
disp in gr " standard deviation for random effect " in ye `j'
}
else{
disp " "
disp in gr /*
*/" diagonal element of cholesky decomp. of covariance matrix"
}
disp in ye " `eqnam' : `vars1'"
global HG_eqs "$HG_eqs (`eqnam': `depv' `vars1', nocons)"
local depv
* initial value of standard deviation
matrix `mat' = (0.5)
matrix colnames `mat' = `vars1'
matrix coleq `mat' = `eqnam'
matrix M_initr=nullmat(M_initr),`mat'
local l=`l'+1
local j=`j'+1
local rfl = `rfl' + 1
}
if `nrf' > 1&$HG_cor==1{
/* generate equations for covariance parameters */
disp " "
disp in gr " off-diagonal elements"
local ii=2
*local num = $HG_tplv-`lev'+1
*local eqnam: word `num' of $HG_clus
*local eqnam = substr("`eqnam'",1,4)
while (`ii'<=`nrf'){
local jj=1
while (`jj'<`ii'){
local eqnaml "`clusnam'`ii'_`jj'"
eq "`eqnaml'":
eq ? "`eqnaml'"
disp in ye " `eqnaml': _cons"
global HG_eqs "$HG_eqs (`eqnaml':)"
matrix `mat'=(0)
matrix colnames `mat'=_cons
matrix coleq `mat'=`eqnaml'
matrix M_initr=nullmat(M_initr),`mat'
local jj = `jj' + 1
}
local ii=`ii'+1
}
}
} /* end else $HG_free */
local lev=`lev'+1
} /* lev loop */
} /* endif equ given */
else{
/* random intercepts */
if M_nrfc[1,$HG_tplv]~=$HG_tplv{
"must specify equations for random effects"
exit 198
}
local k=$HG_tprf-1
matrix `mat'=J(1,`k',1)
matrix M_nbrf=M_nbrf,`mat'
local lev=2
disp " "
while (`lev'<=$HG_tplv){
local l=$HG_tplv-`lev'+1
local clusnam: word `l' of $HG_clus
disp " "
disp in gr "***level `lev' (" in ye "`clusnam'" in gr ") equation(s):"
if $HG_init==1{
di in gr "(init option: parameters will not be estimated)"
di " "
}
local clusnam = substr("`clusnam'",1,4)
local lv = `lev' - 1
local clusnam "`clusnam'`lv'"
/*MASS POINTS */
if ($HG_free){
local k = 1
local nloc = M_nip[1, `lev']
if $HG_cip{ local nloc = `nloc' - 1}
* new
local pnum = 0
local pvars _cons
tempname pmat
matrix `pmat' = J(1,1,0)
if "`peqs'"~=""{
local levm = `lev' - 1
local peqn: word `levm' of `peqs'
eq ? "`peqn'"
local pvars "$S_1"
markout `touse' `pvars'
local pnum: word count `pvars'
matrix M_np[1,`lev'] = `pnum' + 1
matrix `pmat' = J(1, `pnum', 0)
}
matrix colnames `pmat' = `pvars'
* end new
while `k' <= `nloc'{
disp " "
disp in gre "class `k'"
local j = 1
local eqnam "z`lev'_1_`k'"
disp in gr " location for random effect"
disp in ye " `eqnam': _cons"
global HG_eqs "$HG_eqs (`eqnam': `depv')"
local depv
* initial locations of mass points
*local val = int((`k'+1)/2)*(-1)^`k'/10
local val = int((`k'+1)/2)*(-1)^`k'
matrix `mat'=(`val')
matrix colnames `mat'=_cons
matrix coleq `mat'=`eqnam'
matrix M_initr=nullmat(M_initr),`mat'
if `k'<M_nip[1, `lev']{
local eqnam "p`lev'_`k'"
disp in gr " log odds for random effect"
if `pnum'>0{
disp in ye " `eqnam': `pvars' _cons"
global HG_eqs "$HG_eqs (`eqnam':`pvars')"
matrix coleq `pmat'=`eqnam'
matrix M_initr=nullmat(M_initr),`pmat'
}
else{
disp in ye " `eqnam': _cons"
global HG_eqs "$HG_eqs (`eqnam':)"
* initial log odds for masspoints
}
* set constant
matrix `mat'=(-.4)
matrix colnames `mat'=_cons
matrix coleq `mat'=`eqnam'
matrix M_initr=nullmat(M_initr),`mat'
}
local k = `k' + 1
}
}
/* ST. DEVS */
else{
local eqnam "`clusnam'"
disp " "
disp in gr " standard deviation of random effect"
disp in ye " `eqnam': _cons"
global HG_eqs "$HG_eqs (`eqnam':`depv')"
local depv
* initial value for sd
matrix `mat'=(0.5)
matrix colnames `mat'=_cons
matrix coleq `mat'=`eqnam'
matrix M_initr=nullmat(M_initr),`mat'
local cons `cons'1
}
local lev=`lev'+1
}
}
disp " "
matrix `mat' = nullmat(M_initr), nullmat(M_initf) /* M_initr may not exist */
global HG_befB = colsof(`mat')
/* deal with Bmatrix */
global HG_bmat = 0
if "`bmatrix'"~=""{
if $HG_tprf<2{
disp in re "bmatrix can only be used for more than 1 random effect"
exit 198
}
* capture matrix list `bmatrix'
if _rc>0{
disp in re "bmatrix is not a matrix"
exit 198
}
local bn = colsof(`bmatrix')
if rowsof(`bmatrix')~=`bn'{
disp in re "bmatrix must be square"
exit 198
}
if `bn'~=$HG_tprf-1{
disp in re "number of rows and columns of B matrix must be " $HG_tprf-1
exit 198
}
matrix M_b=`bmatrix'
global HG_bmat = 1
disp in gr "B-matrix:"
local i = 1
while `i' <= `bn'{
local j = 1
while `j'<= `bn'{
if M_b[`i',`j']>0{
local eqnam b`i'_`j'
disp " "
disp in ye " `eqnam': _cons"
global HG_eqs "$HG_eqs (`eqnam':)"
* initial value for sd
matrix `mat'=(0.5)
matrix colnames `mat'=_cons
matrix coleq `mat'=`eqnam'
matrix M_initr=nullmat(M_initr),`mat'
local cons `cons'1
}
local j = `j' + 1
}
local i = `i' + 1
}
disp " "
}
/* total number of fixed linear predictors */
global HG_tpff = colsof(M_nffc)
/* deal with geqs */
global HG_ngeqs = 0
if "`geqs'"~=""{
* M_ngeqs: first row says which random effect, second how many terms
local num: word count `geqs'
global HG_ngeqs = `num'
matrix M_ngeqs=J(3,`num',0)
local nxt = M_nffc[1,$HG_tpff] + colsof(M_initr) + 1
disp in gr "Regressions of random effects on covariates:"
tokenize `geqs'
local i = 1
while "`1'"~="" {
local k = substr("`1'",2,1)
local k = `k' + 1
if `k'>$HG_tprf {
disp in red "eq `1' refers to a random effects that does not exist"
exit 198
}
local j = 1
while `j'<=`i'{
if M_ngeqs[1,`j']==`k' {
disp in red "more than one geq given for random effect" `k'-1
exit 198
}
local j = `j' + 1
}
eq ? "`1'"
local vars "$S_1"
local num: word count `vars'
matrix `mat'=J(1,`num',0)
matrix colnames `mat'=`vars'
matrix coleq `mat'=`1'
matrix M_initr=nullmat(M_initr),`mat'
markout `touse' `vars'
disp in gr " equation for random effect " in ye `k'-1
disp in ye " `1': `vars'"
global HG_eqs "$HG_eqs (`1': `vars', nocons)"
matrix M_ngeqs[1,`i']=`k'
matrix M_ngeqs[2,`i']=`num'
matrix M_ngeqs[3,`i']=`nxt'
local nxt = `nxt' + `num'
local i = `i' + 1
mac shift
}
disp " "
}
global which = 15
/* the "clock" ip and znow*/
local k = $HG_tprf+2
matrix M_ip = J(1,`k',1)
local k = $HG_tprf - 1
matrix M_znow =J(1,`k',1)
end
program define mint
args n k
if `k' == 5 {
multn `n'
}
else if `k' == 7 {
sphern `n'
}
else if `n'==2&(`k' == 9|`k' == 11|`k' == 15){
int2k `k'
}
else{
disp in re "nip must be 5 or 7 if dim >2 and 5, 7, 9, 11 or 15 if dim=2"
exit 198
}
end
program define sphern
version 6.0
/* degree 7 rule for n>=3 used by Naylor and Smith */
args n
if `n' == 2 {
spher2
}
else if `n' == 3{
spher3
}
else if `n' == 6{
spher6
}
/*
else if `n' == 4{
spher4
}
*/
else{
tempname r s t B C D r1 r2 A1 A2 x X y a norm im
local num =2*( 2^`n' + 2*`n'^2)
* generate U_n: 7-1 page 295
scalar `r' = sqrt(2)
scalar `s' = sqrt(2/`n')
scalar `t' = 1
scalar `B' = ln(8-`n') - ln(`n') - ln(`n'+2) - ln(`n'+4) + ln(2) - lngamma(`n'/2)
scalar `C' = -`n'*ln(2) + 3*ln(`n') - ln(`n') - ln(`n'+2) - ln(`n'+4) + ln(2) - lngamma(`n'/2)
scalar `D' = ln(4) - ln(`n') - ln(`n'+2) - ln(`n'+4) + ln(2) - lngamma(`n'/2)
scalar `r2' = sqrt( (`n' + 2 - sqrt(2*(`n'+2)))/2 )
scalar `r1' = sqrt( (`n' + 2 + sqrt(2*(`n'+2)))/2 )
scalar `A2' = ln( ( `n' + 2 + sqrt(2*(`n'+2)) )/(4*(`n'+2)) )+ lngamma(`n'/2)
scalar `A1' = ln( ( `n' + 2 - sqrt(2*(`n'+2)) )/(4*(`n'+2)) )+ lngamma(`n'/2)
* Do r and B
matrix `x' = J(1,`n',0)
local ir = 1
while `ir' <= `n'{
local j = 1
while `j' <= 2 {
matrix `x'[1,`ir'] = (-1)^`j'*`r'
matrix `X' = nullmat(`X')\ `x'
matrix `y' = nullmat(`y'),`B'
matrix `x'[1,`ir'] = 0
local j = `j' + 1
}
local ir = `ir' + 1
}
* Do t and D
matrix `x' = J(1,`n',0)
local it1 = 1
while `it1' <= `n'{
local j1 = 1
while `j1' <= 2{
matrix `x'[1,`it1'] = (-1)^`j1'*`t'
local it2 = `it1' + 1
while `it2' <= `n'{
local j2 = 1
while `j2' <= 2{
* disp "it1 = `it1' and it2 = `it2'"
matrix `x'[1,`it2'] = (-1)^`j2'*`t'
matrix `X' = `X'\ `x'
matrix `y' = `y', `D'
matrix `x'[1,`it2'] = 0
local j2 = `j2' + 1
}
local it2 = `it2' + 1
}
matrix `x'[1,`it1'] = 0
local j1 = `j1' + 1
}
local it1 = `it1' + 1
}
* Do s and C
matrix `x' = J(1,`n',`s')
matrix `im' = J(1,`n'+1,0)
matrix `im'[1,1] = 1
local pm = `n'+1
while `pm' <= `n'+1{
/* set previous digits to 0 */
while `pm'>1{
matrix `x'[1,`pm'-1] = `s'
matrix `im'[1,`pm'] = 0
local pm = `pm' - 1
}
matrix `X' = `X'\ `x'
matrix `y' = `y', `C'
* matrix list `im'
local pm = 1
while `im'[1,`pm'] == 1{
local pm = `pm' + 1
}
* disp "pm = " `pm'
/* pm is first incomplete digit */
if `pm'<= `n' + 1{
matrix `im'[1,`pm'] = 1
matrix `x'[1,`pm'-1] = -`s'
local pm = `pm' - 1
}
}
*matrix list `X'
*matrix list `y'
matrix M_zlc`num' = `X'*`r1'\ `X'*`r2'
matrix M_zlc`num' = M_zlc`num''
matrix `a'= J(1,`num'/2,`A1'),J(1,`num'/2,`A2')
matrix M_zps`num' = `y',`y'
matrix M_zps`num' = M_zps`num'+`a'
global S_1 = `num'
} /* end else */
end
program define spher2
version 6.0
*p. 324, 7-1
tempname r s t A B C x
capture matrix drop M_zlc12
capture matrix drop M_zps12
scalar `r' = sqrt(6)
scalar `s' = sqrt((9-3*sqrt(5))/4)
scalar `t' = sqrt((9+3*sqrt(5))/4)
scalar `A' = ln(1/36)
scalar `B' = ln(5 + 2*sqrt(5)) - ln(45)
scalar `C' = ln(5 - 2*sqrt(5)) - ln(45)
*r
matrix `x' = J(1,2,0)
local ir = 1
while `ir' <= 2{
local j = 1
while `j' <= 2{
matrix `x'[1,`ir'] = (-1)^`j'*`r'
matrix M_zlc12 = nullmat(M_zlc12)\ `x'
matrix M_zps12 = nullmat(M_zps12), `A'
matrix `x'[1,`ir'] = 0
local j = `j' + 1
}
local ir = `ir' + 1
}
*t
matrix `x' = J(1,2,`t')
matrix M_zlc12 = M_zlc12\ `x'
matrix M_zps12 = M_zps12, `C'
local m = 1 /* number of - */
while `m' <= 2{
local i = 1 /* pos of first - */
while `i'<= 2{
matrix `x'[1,`i'] = -`t'
local j = `i' + 1
if `m'>1{
while `j' <= 2 {
matrix `x'[1,`j'] = -`t'
matrix M_zlc12 = M_zlc12\ `x'
matrix M_zps12 = M_zps12, `C'
matrix `x'[1,`j'] = `t'
local j = `j' + 1
}
}
else{
matrix M_zlc12 = M_zlc12\ `x'
matrix M_zps12 = M_zps12, `C'
}
matrix `x'[1, `i'] = `t'
local i = `i' + 1
}
local m = `m' + 1
}
* s
matrix `x' = J(1,2,`s')
matrix M_zps12 = M_zps12, `B'
matrix M_zlc12 = M_zlc12\ `x'
local m = 1 /* number of - */
while `m' <= 2{
local i = 1 /* pos of first - */
while `i'<= 2{
matrix `x'[1,`i'] = -`s'
local j = `i' + 1
if `m'>1{
while `j' <= 2 {
matrix `x'[1,`j'] = -`s'
matrix M_zlc12 = M_zlc12\ `x'
matrix M_zps12 = M_zps12, `B'
matrix `x'[1,`j'] = `s'
local j = `j' + 1
}
}
else{
matrix M_zlc12 = M_zlc12\ `x'
matrix M_zps12 = M_zps12, `B'
}
matrix `x'[1, `i'] = `s'
local i = `i' + 1
}
local m = `m' + 1
}
matrix M_zlc12 = M_zlc12'
global S_1 = 12
end
program define spher3
version 6.0
* Stroud (1971) p. 327, E_3^{r^2} 7-1
args n
tempname r s t A B C D x im
local num = 27
capture matrix drop M_zlc27
capture matrix drop M_zps27
scalar `r' = sqrt((15 + sqrt(15))/2)
scalar `s' = sqrt(6 - sqrt(15))
scalar `t' = sqrt(9 + 2*sqrt(15))
scalar `A' = ln(720 + 8*sqrt(15)) - ln(2205)
scalar `B' = ln(270 - 46*sqrt(15)) - ln(15435)
scalar `C' = ln(162 + 41*sqrt(15)) - ln(6174)
scalar `D' = ln(783 - 202*sqrt(15)) - ln(24696)
local n = 3
* D
matrix `x' = J(1,`n',`t')
matrix `im' = J(1,`n'+1,0)
matrix `im'[1,1] = 1
local pm = `n'+1
while `pm' <= `n'+1{
/* set previous digits to 0 */
while `pm'>1{
matrix `x'[1,`pm'-1] = `t'
matrix `im'[1,`pm'] = 0
local pm = `pm' - 1
}
matrix M_zlc`num' = nullmat(M_zlc`num')\ `x'
matrix M_zps`num' = nullmat(M_zps`num'), `D'
* matrix list `im'
local pm = 1
while `im'[1,`pm'] == 1{
local pm = `pm' + 1
}
* disp "pm = " `pm'
/* pm is first incomplete digit */
if `pm'<= `n' + 1{
matrix `im'[1,`pm'] = 1
matrix `x'[1,`pm'-1] = -`t'
local pm = `pm' - 1
}
}
* B
matrix `x' = J(1,`n',0)
local ir = 1
while `ir' <= `n'{
local j = 1
while `j' <= 2{
matrix `x'[1,`ir'] = (-1)^`j'*`r'
matrix M_zlc`num' = M_zlc`num'\ `x'
matrix M_zps`num' = M_zps`num',`B'
matrix `x'[1,`ir'] = 0
local j = `j' + 1
}
local ir = `ir' + 1
}
* C
matrix `x' = J(1,`n',0)
local is1 = 1
while `is1' <= `n'{
local j1 = 1
while `j1' <= 2{
matrix `x'[1,`is1'] = (-1)^`j1'*`s'
local is2 = `is1' + 1
while `is2' <= `n'{
local j2 = 1
while `j2' <= 2{
* disp "is1 = `is1' and is2 = `is2'"
matrix `x'[1,`is2'] = (-1)^`j2'*`s'
matrix M_zlc`num' = M_zlc`num'\ `x'
matrix M_zps`num' = M_zps`num',`C'
matrix `x'[1,`is2'] = 0
local j2 = `j2' + 1
}
local is2 = `is2' + 1
}
matrix `x'[1,`is1'] = 0
local j1 = `j1' + 1
}
local is1 = `is1' + 1
}
* A
matrix M_zps`num' = M_zps`num',`A'
matrix `x' = J(1,`n',0)
matrix M_zlc`num' = M_zlc`num'\ `x'
matrix M_zlc`num' = M_zlc`num''
global S_1 = `num'
end
program define spher4
version 6.0
* Stroud (1971) p. 329, E_4^{r^2} 7-1
args n
tempname r s t A B C D x im
local num = 49
capture matrix drop M_zlc`num'
capture matrix drop M_zps`num'
scalar `s' = sqrt(3 - sqrt(3))
scalar `r' = 2*`s'
scalar `t' = sqrt(6 + 2*sqrt(3))
scalar `A' = -ln(4)
scalar `B' = ln(9 + 5*sqrt(3)) - ln(576)
scalar `C' = ln(9 + -5*sqrt(3)) - ln(576)
local n = 4
* C and t
matrix `x' = J(1,`n',0)
local is1 = 1
while `is1' <= `n'{
local j1 = 1
while `j1' <= 2{
matrix `x'[1,`is1'] = (-1)^`j1'*`t'
local is2 = `is1' + 1
while `is2' <= `n'{
local j2 = 1
while `j2' <= 2{
* disp "is1 = `is1' and is2 = `is2'"
matrix `x'[1,`is2'] = (-1)^`j2'*`t'
matrix M_zlc`num' = nullmat(M_zlc`num')\ `x'
matrix M_zps`num' = nullmat(M_zps`num'),`C'
matrix `x'[1,`is2'] = 0
local j2 = `j2' + 1
}
local is2 = `is2' + 1
}
matrix `x'[1,`is1'] = 0
local j1 = `j1' + 1
}
local is1 = `is1' + 1
}
* B and s
matrix `x' = J(1,`n',`s')
matrix `im' = J(1,`n'+1,0)
matrix `im'[1,1] = 1
local pm = `n'+1
while `pm' <= `n'+1{
/* set previous digits to 0 */
while `pm'>1{
matrix `x'[1,`pm'-1] = `s'
matrix `im'[1,`pm'] = 0
local pm = `pm' - 1
}
matrix M_zlc`num' = nullmat(M_zlc`num')\ `x'
matrix M_zps`num' = nullmat(M_zps`num'), `B'
* matrix list `im'
local pm = 1
while `im'[1,`pm'] == 1{
local pm = `pm' + 1
}
* disp "pm = " `pm'
/* pm is first incomplete digit */
if `pm'<= `n' + 1{
matrix `im'[1,`pm'] = 1
matrix `x'[1,`pm'-1] = -`s'
local pm = `pm' - 1
}
}
* B and r
matrix `x' = J(1,`n',0)
local ir = 1
while `ir' <= `n'{
local j = 1
while `j' <= 2{
matrix `x'[1,`ir'] = (-1)^`j'*`r'
matrix M_zlc`num' = M_zlc`num'\ `x'
matrix M_zps`num' = M_zps`num',`B'
matrix `x'[1,`ir'] = 0
local j = `j' + 1
}
local ir = `ir' + 1
}
* A
matrix M_zps`num' = M_zps`num',`A'
matrix `x' = J(1,`n',0)
matrix M_zlc`num' = M_zlc`num'\ `x'
matrix M_zlc`num' = M_zlc`num''
global S_1 = `num'
end
capture program drop spher6
program define spher6
* Stroud 7-1 (p. 318)
tempname r s t B C D A x X y a norm im
local n = 6
local num = 2^`n' + 2*`n'^2 + 1
capture matrix drop M_zlc`num'
capture matrix drop M_zps`num'
/*
scalar `r' = sqrt( (3*(8-`n')-(`n'-2)*sqrt(3*(8-`n')))/(2*(5-`n')) )
scalar `s' = sqrt( (3*`n' - 2*sqrt(3*(8-`n')))/(2*(3*`n' - 8)) )
scalar `t' = sqrt( (6+sqrt(3*(8-`n')))/2 )
scalar `B' = (8-`n')/( 8*`r'^6) *2/exp(lngamma(`n'/2))
scalar `C' = 1 /( 2^(`n'+3)*`s'^6) *2/exp(lngamma(`n'/2))
scalar `D' = 1/(16*`t'^6) *2/exp(lngamma(`n'/2))
scalar `A' = 2/exp(lngamma(`n'/2)) - 2*`n'*`B' - 2^`n'*`C' - 2*`n'*(`n'-1)*`D'
disp in re "r = " `r' " s = " `s' " t = " `t'
disp in re "A = " `A' " B = " `B' " C = " `C' " D = " `D'
*/
* - - +
scalar `r' = sqrt( (3*(8-`n')-(`n'-2)*sqrt(3*(8-`n')))/(5-`n') )
scalar `s' = sqrt( (3*`n' - 2*sqrt(3*(8-`n')))/(3*`n' - 8) )
scalar `t' = sqrt( 6+sqrt(3*(8-`n')) )
scalar `B' = ln(8-`n') - ln(8) - 6*( ln(`r') - ln(2)/2 ) + ln(2) - lngamma(`n'/2)
scalar `C' = -(`n'+ 3)*ln(2)-6*( ln(`s') - ln(2)/2 ) + ln(2) - lngamma(`n'/2)
scalar `D' = -ln(16) - 6*( ln(`t') - ln(2)/2 ) + ln(2) - lngamma(`n'/2)
scalar `A' = ln( 2/exp(lngamma(`n'/2)) - 2*`n'*exp(`B') - 2^`n'*exp(`C') - 2*`n'*(`n'-1)*exp(`D') )
*disp in re "r = " `r' " s = " `s' " t = " `t'
*disp in re "A = " `A' " B = " `B' " C = " `C' " D = " `D'
* A
matrix `X' = J(1,`n',0)
matrix `y' = (`A')
* Do r and B
matrix `x' = J(1,`n',0)
local ir = 1
while `ir' <= `n'{
local j = 1
while `j' <= 2 {
matrix `x'[1,`ir'] = (-1)^`j'*`r'
matrix `X' = nullmat(`X')\ `x'
matrix `y' = nullmat(`y'),`B'
matrix `x'[1,`ir'] = 0
local j = `j' + 1
}
local ir = `ir' + 1
}
* Do t and D
matrix `x' = J(1,`n',0)
local it1 = 1
while `it1' <= `n'{
local j1 = 1
while `j1' <= 2{
matrix `x'[1,`it1'] = (-1)^`j1'*`t'
local it2 = `it1' + 1
while `it2' <= `n'{
local j2 = 1
while `j2' <= 2{
* disp "it1 = `it1' and it2 = `it2'"
matrix `x'[1,`it2'] = (-1)^`j2'*`t'
matrix `X' = `X'\ `x'
matrix `y' = `y', `D'
matrix `x'[1,`it2'] = 0
local j2 = `j2' + 1
}
local it2 = `it2' + 1
}
matrix `x'[1,`it1'] = 0
local j1 = `j1' + 1
}
local it1 = `it1' + 1
}
* Do s and C
matrix `x' = J(1,`n',`s')
matrix `im' = J(1,`n'+1,0)
matrix `im'[1,1] = 1
local pm = `n'+1
while `pm' <= `n'+1{
/* set previous digits to 0 */
while `pm'>1{
matrix `x'[1,`pm'-1] = `s'
matrix `im'[1,`pm'] = 0
local pm = `pm' - 1
}
matrix `X' = `X'\ `x'
matrix `y' = `y', `C'
* matrix list `im'
local pm = 1
while `im'[1,`pm'] == 1{
local pm = `pm' + 1
}
* disp "pm = " `pm'
/* pm is first incomplete digit */
if `pm'<= `n' + 1{
matrix `im'[1,`pm'] = 1
matrix `x'[1,`pm'-1] = -`s'
local pm = `pm' - 1
}
}
matrix M_zlc`num' = `X'
matrix M_zps`num' = `y'
matrix M_zlc`num' = M_zlc`num''
global S_1 = `num'
end
program define fsrs
version 6.0
args r s x n
if abs(`s')<1e-10&abs(`r')<1e-10{
matrix `x' = (0,0)
scalar `n' = 1
}
else if abs(`s')<1e-10{
matrix `x' = (`r',0\ -`r',0\ 0,`r'\ 0,-`r')
scalar `n' = 4
}
else if abs(`r'-`s')<1e-10{
matrix `x' = (`r',`s'\ -`r',`s'\ `r',-`s'\ -`r',-`s')
scalar `n' = 4
}
else{
matrix `x' = (`r',`s'\ -`r',`s'\ `r',-`s'\ -`r',-`s'\ `s',`r'\ -`s',`r'\ `s',-`r'\ -`s',-`r')
scalar `n' = 8
}
end
program define int2k
version 6.0
args k
if `k' == 9{
*E_2^{r^2}: 9-1
local l = 4
local num = 20
tempname r1 r2 r3 r4 s1 s2 s3 s4 B1 B2 B3 B4
/*
scalar `r1' = 1.538189001320852*sqrt(2)
scalar `r2' = 1.224744871391589*sqrt(2)
scalar `r3' = 0.4817165220011443*sqrt(2)
scalar `r4' = 2.607349811958554*sqrt(2)
scalar `s4' = 0.9663217712794149*sqrt(2)
scalar `s1' = 0
scalar `s2' = `r2'
scalar `s3' = `r3'
scalar `B1' = ln(0.1237222328857347) - ln(_pi)
scalar `B2' = ln(0.06544984694978697) - ln(_pi)
scalar `B3' = ln(0.5935280476180875) - ln(_pi)
scalar `B4' = ln(0.001349017971918148) - ln(_pi)
*/
scalar `r3' = 1.538189001320852*sqrt(2)
scalar `r2' = 1.224744871391589*sqrt(2)
scalar `r4' = 0.4817165220011443*sqrt(2)
scalar `r1' = 2.607349811958554*sqrt(2)
scalar `s1' = 0.9663217712794149*sqrt(2)
scalar `s3' = 0
scalar `s2' = `r2'
scalar `s4' = `r4'
scalar `B3' = ln(0.1237222328857347) - ln(_pi)
scalar `B2' = ln(0.06544984694978697) - ln(_pi)
scalar `B4' = ln(0.5935280476180875) - ln(_pi)
scalar `B1' = ln(0.001349017971918148) - ln(_pi)
}
if `k' == 11{
*E_2^{r^2}: 11-1
local l = 5
local num = 28
tempname r1 r2 r3 r4 r5 s1 s2 s3 s4 s5 B1 B2 B3 B4 B5
/*
scalar `r1' = 2.757816396257008*sqrt(2)
scalar `r2' = 1.732050807568877*sqrt(2)
scalar `r3' = 0.6280515301597559*sqrt(2)
scalar `r4' = 1.224744871391589*sqrt(2)
scalar `r5' = 0.7071067811865475*sqrt(2)
scalar `s4' = 2.121320343559643*sqrt(2)
scalar `s5' = 1.224744871391589*sqrt(2)
scalar `s1' = 0
scalar `s2' = 0
scalar `s3' = 0
scalar `B1' = ln(0.0008176645817675417) - ln(_pi)
scalar `B2' = ln(0.04363323129985824) - ln(_pi)
scalar `B3' = ln(0.5373255214498174) - ln(_pi)
scalar `B4' = ln(0.003636102608321520) - ln(_pi)
scalar `B5' = ln(0.09817477042468103) - ln(_pi)
*/
scalar `r1' = 2.757816396257008*sqrt(2)
scalar `r3' = 1.732050807568877*sqrt(2)
scalar `r5' = 0.6280515301597559*sqrt(2)
scalar `r2' = 1.224744871391589*sqrt(2)
scalar `r4' = 0.7071067811865475*sqrt(2)
scalar `s2' = 2.121320343559643*sqrt(2)
scalar `s4' = 1.224744871391589*sqrt(2)
scalar `s1' = 0
scalar `s3' = 0
scalar `s5' = 0
scalar `B1' = ln(0.0008176645817675417) - ln(_pi)
scalar `B3' = ln(0.04363323129985824) - ln(_pi)
scalar `B5' = ln(0.5373255214498174) - ln(_pi)
scalar `B2' = ln(0.003636102608321520) - ln(_pi)
scalar `B4' = ln(0.09817477042468103) - ln(_pi)
}
if `k' == 15{
*E_2^{r^2}: 15-1
local l = 9
local num = 44
tempname r1 r2 r3 r4 r5 r6 r7 r8 r9 s1 s2 s3 s4 s5 s6 s7 s8 s9 B1 B2 B3 B4 B5 B6 B7 B8 B9
/*
scalar `r1' = 3.538388728121807*sqrt(2)
scalar `r2' = 2.359676416877929*sqrt(2)
scalar `r3' = 1.312801844620926*sqrt(2)
scalar `r4' = 0.5389559482114205*sqrt(2)
scalar `r5' = 2.300279949805658*sqrt(2)
scalar `r6' = 1.581138830084189*sqrt(2)
scalar `r7' = 0.8418504335819279*sqrt(2)
scalar `r8' = 2.685533581755341*sqrt(2)
scalar `r9' = 1.740847514397403*sqrt(2)
scalar `s8' = 1.112384431771456*sqrt(2)
scalar `s9' = 0.7210826504868960*sqrt(2)
scalar `s1' = 0
scalar `s2' = 0
scalar `s3' = 0
scalar `s4' = 0
scalar `s5' = `r5'
scalar `s6' = `r6'
scalar `s7' = `r7'
scalar `B1' = ln(0.000008006483569659628) - ln(_pi)
scalar `B2' = ln(0.003604577420838264) - ln(_pi)
scalar `B3' = ln(0.1187609330759137) - ln(_pi)
scalar `B4' = ln(0.4372488543791402) - ln(_pi)
scalar `B5' = ln(0.00003671735075832989) - ln(_pi)
scalar `B6' = ln(0.005654866776461627) - ln(_pi)
scalar `B7' = ln(0.1777774268424240) - ln(_pi)
scalar `B8' = ln(0.0002735449647853290) - ln(_pi)
scalar `B9' = ln(0.02087984556938594) - ln(_pi)
*/
scalar `r1' = 3.538388728121807*sqrt(2)
scalar `r4' = 2.359676416877929*sqrt(2)
scalar `r7' = 1.312801844620926*sqrt(2)
scalar `r9' = 0.5389559482114205*sqrt(2)
scalar `r2' = 2.300279949805658*sqrt(2)
scalar `r5' = 1.581138830084189*sqrt(2)
scalar `r8' = 0.8418504335819279*sqrt(2)
scalar `r3' = 2.685533581755341*sqrt(2)
scalar `r6' = 1.740847514397403*sqrt(2)
scalar `s3' = 1.112384431771456*sqrt(2)
scalar `s6' = 0.7210826504868960*sqrt(2)
scalar `s1' = 0
scalar `s4' = 0
scalar `s7' = 0
scalar `s9' = 0
scalar `s2' = `r2'
scalar `s5' = `r5'
scalar `s8' = `r8'
scalar `B1' = ln(0.000008006483569659628) - ln(_pi)
scalar `B4' = ln(0.003604577420838264) - ln(_pi)
scalar `B7' = ln(0.1187609330759137) - ln(_pi)
scalar `B9' = ln(0.4372488543791402) - ln(_pi)
scalar `B2' = ln(0.00003671735075832989) - ln(_pi)
scalar `B5' = ln(0.005654866776461627) - ln(_pi)
scalar `B8' = ln(0.1777774268424240) - ln(_pi)
scalar `B3' = ln(0.0002735449647853290) - ln(_pi)
scalar `B6' = ln(0.02087984556938594) - ln(_pi)
}
tempname x n
capture matrix drop M_zlc`num'
local i = 1
while `i'<=`l'{
fsrs `r`i'' `s`i'' `x' `n'
* matrix list `x'
matrix M_zlc`num' = nullmat(M_zlc`num')\ `x'
matrix `x' = J(1,`n',`B`i'')
matrix M_zps`num' = nullmat(M_zps`num'), `x'
local i = `i' + 1
}
matrix M_zlc`num' = M_zlc`num''
global S_1 = `num'
end
program define multn
version 6.0
* Stroud (1971) p. 317, 5-2
args n
tempname r s A B C x
local num = 2*`n'^2 + 1
capture matrix drop M_zlc`num'
capture matrix drop M_zps`num'
scalar `r' = sqrt((`n'+2))
scalar `s' = sqrt((`n'+2)/2)
scalar `A' = ln(2) - ln(`n'+2)
scalar `B' = ln(4-`n')-ln(2) -2*ln(`n'+2)
scalar `C' = -2*ln(`n'+2)
matrix M_zps`num' = (`A')
matrix `x' = J(1,`n',0)
matrix M_zlc`num' = `x'
local ir = 1
while `ir' <= `n'{
local j = 1
while `j' <= 2{
matrix `x'[1,`ir'] = (-1)^`j'*`r'
matrix M_zlc`num' = M_zlc`num'\ `x'
matrix M_zps`num' = M_zps`num',`B'
matrix `x'[1,`ir'] = 0
local j = `j' + 1
}
local ir = `ir' + 1
}
local is1 = 1
while `is1' <= `n'{
local j1 = 1
while `j1' <= 2{
matrix `x'[1,`is1'] = (-1)^`j1'*`s'
local is2 = `is1' + 1
while `is2' <= `n'{
local j2 = 1
while `j2' <= 2{
* disp "is1 = `is1' and is2 = `is2'"
matrix `x'[1,`is2'] = (-1)^`j2'*`s'
matrix M_zlc`num' = M_zlc`num'\ `x'
matrix M_zps`num' = M_zps`num',`C'
matrix `x'[1,`is2'] = 0
local j2 = `j2' + 1
}
local is2 = `is2' + 1
}
matrix `x'[1,`is1'] = 0
local j1 = `j1' + 1
}
local is1 = `is1' + 1
}
matrix M_zlc`num' = M_zlc`num''
global S_1 = `num'
end
program define ghquad
* stolen from rfprobit (Bill Sribney)
version 4.0
local n `1'
tempname xx ww a b
local i 1
local m = int((`n' + 1)/2)
matrix M_zlc`n' = J(1,`m',0)
matrix M_zps`n' = M_zlc`n'
while `i' <= `m' {
if `i' == 1 {
scalar `xx' = sqrt(2*`n'+1)-1.85575*(2*`n'+1)^(-1/6)
}
else if `i' == 2 { scalar `xx' = `xx'-1.14*`n'^0.426/`xx' }
else if `i' == 3 { scalar `xx' = 1.86*`xx'-0.86*M_zlc`n'[1,1] }
else if `i' == 4 { scalar `xx' = 1.91*`xx'-0.91*M_zlc`n'[1,2] }
else {
local im2 = `i' -2
scalar `xx' = 2*`xx'-M_zlc`n'[1,`im2']
}
hermite `n' `xx' `ww'
matrix M_zlc`n'[1,`i'] = `xx'
matrix M_zps`n'[1,`i'] = ln(`ww') - ln(_pi)/2
local i = `i' + 1
}
if mod(`n', 2) == 1 { matrix M_zlc`n'[1,`m'] = 0}
/* start in tails */
matrix `b' = (1,1)
matrix M_zps`n' = M_zps`n'#`b'
matrix M_zps`n' = M_zps`n'[1,1..`n']
matrix `b' = (1,-1)
matrix M_zlc`n' = M_zlc`n'#`b'
matrix M_zlc`n' = M_zlc`n'[1,1..`n']
/* other alternative (start in centre) */
/*
matrix `b' = J(1,`n',0)
local i = 1
while ( `i'<=`n'){
matrix `b'[1, `i'] = M_zlc`n'[1, `n'+1-`i']
local i = `i' + 1
}
matrix M_zlc`n' = `b'
local i = 1
while ( `i'<=`n'){
matrix `b'[1, `i'] = M_zps`n'[1, `n'+1-`i']
local i = `i' + 1
}
matrix M_zps`n' = `b'
*/
/* end other alternative */
matrix M_zlc`n' = M_zlc`n'* sqrt(2)
end
program define hermite /* integer n, scalar x, scalar w */
* stolen from rfprobit (Bill Sribney)
version 4.0
local n "`1'"
local x "`2'"
local w "`3'"
local last = `n' + 2
tempname i p
matrix `p' = J(1,`last',0)
scalar `i' = 1
while `i' <= 10 {
matrix `p'[1,1]=0
matrix `p'[1,2] = _pi^(-0.25)
local k = 3
while `k'<=`last'{
matrix `p'[1,`k'] = `x'*sqrt(2/(`k'-2))*`p'[1,`k'-1] /*
*/ - sqrt((`k'-3)/(`k'-2))*`p'[1,`k'-2]
local k = `k' + 1
}
scalar `w' = sqrt(2*`n')*`p'[1,`last'-1]
scalar `x' = `x' - `p'[1,`last']/`w'
if abs(`p'[1,`last']/`w') < 3e-14 {
scalar `w' = 2/(`w'*`w')
exit
}
scalar `i' = `i' + 1
}
di in red "hermite did not converge"
exit 499
end
program define lebesque
version 5.0
local n `1'
tempname pt a b
scalar `a' = 1/`n'
matrix M_zps`n' = J(1,`n',`a')
local i = 1
local m = int((`n' + 1)/2)
matrix M_zlc`n' = J(1,`m',0)
while(`i'<=`m'){
scalar `pt' = `i'/`n' -1/(2*`n')
matrix M_zlc`n'[1,`i']=invnorm(`pt')
local i = `i' + 1
}
/* start in tails */
matrix `b' = (1,-1)
matrix M_zlc`n' = M_zlc`n'#`b'
matrix M_zlc`n' = M_zlc`n'[1,1..`n']
/* other alternative: left to right */
/*
while ( `i'<=`n'){
matrix M_zlc`n'[1, `i'] = -M_zlc`n'[1, `n'+1-`i']
local i = `i' + 1
}
*/
end
program define disprand
version 6.0
* displays additional information about random effects
* disp "running disprand "
disp " "
if "e(tplv)" == ""{
* estimates not found
exit
}
tempname var b se cor mn0 mm0
matrix `b' = e(b)
local names: colnames(`b')
tempname M_nrfc M_nip M_nbrf M_nffc M_b V M_frld
matrix `V' = e(V)
matrix `M_nrfc' = e(nrfc)
matrix `M_nip' = e(nip)
matrix `M_nbrf' = e(nbrf)
matrix `M_nffc' = e(nffc)
matrix `M_frld' = e(frld)
local ngeqs = e(ngeqs)
local bmat = e(bmat)
if `bmat' ==1{matrix `M_b' = e(mb)}
local bmat = e(bmat)
local iscor = e(cor)
local nxt = `M_nffc'[1,colsof(`M_nffc')]+1
local free = e(free)
local tplv = e(tplv)
local lev1 = e(lev1)
local tprf = e(tprf)
local cip = e(cip)
local nats = e(nats)
if `free'{
tempname M_np
matrix `M_np' = e(mnp)
}
local nrfold = `M_nrfc'[2,1]
if `M_nbrf'[1,1]>0{
if `lev1' == 1 {disp in gr "Variance at level 1"}
else if `lev1' == 2 {disp in gr "Squared Coefficient of Variation"}
else if `lev1' == 3 {disp in gr "Dispersion at level 1"}
*disp in smcl in gr "{hline 78}" _n
di in gr _dup(78) "-" _n
if `M_nbrf'[1,1]==1{
if `nats'{
scalar `var' = `b'[1, `nxt']^2
scalar `se' = 2*sqrt(`var'*`V'[`nxt',`nxt'])
disp in gr " " in ye `var' " (" `se' ")"
}
else{
scalar `var' = exp(2*`b'[1, `nxt'])
scalar `se' = 2*`var'*sqrt(`V'[`nxt',`nxt'])
disp in gr " " in ye `var' " (" `se' ")"
}
local nxt = `nxt' + 1
}
else{
local log "log "
if `nats'{
local log
}
disp " "
if `lev1'==1{disp in gr " equation for `log'standard deviation: "}
else if `lev1'==2{disp in gr " equation for `log'coefficient of variation"}
else if `lev1'==3{disp in gr " equation for `log'(sqrt(phi))"}
disp " "
local i = 1
while `i' <= `M_nbrf'[1,1]{
scalar `var' = `b'[1,`nxt']
scalar `se' = sqrt(`V'[`nxt',`nxt'])
local nna: word `nxt' of `names'
disp in gr " `nna': " in ye `var' " (" `se' ")"
local i = `i' + 1
local nxt = `nxt' + 1
}
}
}
if `tplv' > 1{
local lev = 2
if `free' == 1{
disp " "
disp in gr "Probabilities and locations of random effects"
}
else{
disp " "
disp in gr "Variances and covariances of random effects"
}
*disp in smcl in gr "{hline 78}" _n
di in gr _dup(78) "-" _n
*disp in gr "-----------------------------------------------------------------------------"
while (`lev' <= `tplv'){
local nip = `M_nip'[1,`lev']
local sof = `M_nrfc'[2,`lev'-1] /* `M_nrfc'[1,`lev'-1] */
disp " "
local cl = `tplv' - `lev' + 1
local cl: word `cl' of `e(clus)'
disp in gr "***level `lev' (" in ye "`cl'" in gr ")"
if `free' == 1{
tempname M_zps`lev'
matrix `M_zps`lev'' = e(zps`lev')
}
local i2 = `M_nrfc'[2,`lev']
local i1 = `nrfold'+1
local num = `i2' -`i1' + 1 /* number of random effects */
if `free'==0{
* get standard errors of variances from those of cholesky decomp.
*disp "sechol `lev' `num' `nxt'"
qui sechol `lev' `num' `nxt'
}
local k = 1
local i = `i1'
local ii = 1
local nrfold = `M_nrfc'[2,`lev']
while `i'<= `i2'{
local n=`M_nip'[2,`i']
if `free'==1{
tempname M_zlc`n'
matrix `M_zlc`n'' = e(zlc`n')
local j = 2
local zz=string(`M_zlc`n''[1,1],"%7.0gc")
local mm "`zz'"
scalar `mn0' = `M_zlc`n''[1,1]*exp(`M_zps`lev''[1,1])
while `j'<=`nip'{
scalar `mn0' = `mn0' + `M_zlc`n''[1,`j']*exp(`M_zps`lev''[1,`j'])
local zz=string(`M_zlc`n''[1,`j'],"%7.0gc")
local mm "`mm'" ", " "`zz'"
local j = `j' + 1
}
disp " "
disp in gr " loc`ii': " in ye "`mm'"
}
local j = `i1'
local jj = 1
while (`j'<=`i'){
if `free'==1{
local m = `M_nip'[2,`j']
capture tempname M_zlc`m'
matrix `M_zlc`m'' = e(zlc`m')
scalar `mm0'=0
local mm = 1
while `mm'<=`nip'{
scalar `mm0' = `mm0' + `M_zlc`m''[1,`mm']*exp(`M_zps`lev''[1,`mm'])
local mm = `mm' + 1
}
local l = 1
scalar `var' = 0
while `l'<=`nip'{
scalar `var' = `var' + /*
*/ (`M_zlc`n''[1,`l']-`mn0')*(`M_zlc`m''[1,`l']-`mm0')*exp(`M_zps`lev''[1,`l'])
local l = `l' + 1
}
if `i' == `j'{
disp in gr " var(`ii'): " in ye `var'
local nb = `M_nbrf'[1,`ii'+`sof']
if `nb'>1{
disp " "
disp in gr " loadings for random effect " `ii'
local load = `nxt' + `nb' - 1
if `M_frld'[1,`j']==0{
local nna: word `load' of `names'
disp in gr " `nna': " in ye 1 " (fixed)"
}
*disp in gr " coefficient of"
local load = 1
while `load'<=`nb'-1{
local nna: word `nxt' of `names'
scalar `var'=`b'[1,`nxt']
scalar `se' = sqrt(`V'[`nxt',`nxt'])
disp in gr " `nna': " in ye `var' " (" `se' ")"
local nxt = `nxt' + 1
local load = `load' + 1
}
disp " "
}
local nxt = `nxt' + 1 /* skip location parameter */
* disp "increased nxt to" `nxt'
if `i'==`i2'{
local l = 2
local zz=string(exp(`M_zps`lev''[1,1]),"%6.0gc")
if `nip'>1{
local mm "0`zz'"
}
else{
local mm "1"
}
while `l'<=`nip'{
local zz=string(exp(`M_zps`lev''[1,`l']),"%6.0gc")
local mm "`mm'" ", " "0`zz'"
local l = `l' + 1
}
disp in gr " prob: " in ye "`mm'"
*new
*** display log odds with standard errors
local npar = `M_np'[1,`lev']
if `npar' == 0 { local npar = 1}
if `npar'>1{
disp " "
disp in gr " log odds parameters"
}
local l = 1
while `l'< `nip'{
if `npar'>1{
if `l'>1 {
disp " "
}
disp in gr " class `l'"
}
local load = 1
local ncur = `nxt' + (`l' - 1)*`num' + (`l' - 1)*`npar' - 1
while `load'<=`npar'{
local ncur = `ncur' + 1
* disp "nxt = `nxt', nb = `nb', num = `num' and ncur = `ncur'"
local nna: word `ncur' of `names'
scalar `var'=`b'[1,`ncur']
scalar `se' = sqrt(`V'[`ncur',`ncur'])
if `npar'>1{
disp in gr " `nna': " in ye `var' " (" `se' ")"
}
local load = `load' + 1
}
local l = `l' + 1
}
local nxt = `ncur' + 1
}
* end new
}
else{
disp in gr "cov(`ii',`jj'): " in ye `var'
}
}
else{/* free=0 */
* disp "k= " `k' ", i= " `i' ", j= " `j' ", ii= " `ii' ", jj= " `jj'
scalar `var' = M_cov[`ii', `jj']
scalar `se' = sqrt(M_se[`k', `k'])
if `i' == `j'{
disp " "
disp in gr " var(`ii'): " in ye `var' " (" `se' ")"
local nb = `M_nbrf'[1,`ii'+`sof']
if `nb'>1{
disp " "
disp in gr " loadings for random effect " `ii'
local load = `nxt' + `nb' -1
if `M_frld'[1,`j']==0{
local nna: word `load' of `names'
disp in gr " `nna': " in ye 1 " (fixed)"
}
* disp in gr " coefficient of"
local load = 1
while `load'<=`nb'-1{
local nna: word `nxt' of `names'
* disp "nxt = " `nxt'
scalar `var'=`b'[1,`nxt']
scalar `se' = sqrt(`V'[`nxt',`nxt'])
disp in gr " `nna': " in ye `var' " (" `se' ")"
local nxt = `nxt' + 1
local load = `load' + 1
}
disp " "
}
* skip variance parameter
local nxt = `nxt' + 1
}
else{
if `iscor'==0{
disp in gr " cov(`ii',`jj'): " in ye "fixed at 0"
}
else{
scalar `cor' = `var'/sqrt(M_cov[`ii',`ii']*M_cov[`jj',`jj'])
disp in gr " cov(`ii',`jj'): " in ye `var' " (" `se' ")" /*
*/ " cor(`ii',`jj'): " `cor'
*local nxt = `nxt' + 1
}
}
}
local j = `j' + 1
local jj = `jj' + 1
local k = `k' + 1
}
local i = `i' + 1
local ii = `ii' + 1
}
local lev = `lev' + 1
/* skip off-diagonal cholesky parameters */
if `iscor'~=0&`free'==0{local nxt = `nxt' + `num'*(`num'-1)/2} /* -1? */
*disp "next nxt is " `nxt'
/*
if `free'{
local nxt = `nxt'+(`nip'-1)*(`num'+1)
if `cip'==0{
local nxt = `nxt'+`num'
}
local nxt = `nxt' - 1
}
*/
*disp "next nxt is " `nxt'
}
if `tprf'>1&`bmat'==1{
disp " "
disp in gr "B-matrix:"
*disp in smcl in gr "{hline 78}" _n
di in gr _dup(78) "-" _n
disp " "
disp " "
* disp "nxt = " `nxt'
local i = 1
while `i'<`tprf'{
local j = 1
while `j' < `tprf'{
if `M_b'[`i',`j']>0{
scalar `var' =`b'[1,`nxt']
scalar `se' = sqrt(`V'[`nxt',`nxt'])
disp in gr " B(`i',`j'): " in ye `var' " (" `se' ")"
local nxt = `nxt' + 1
}
local j = `j' + 1
}
local i = `i' + 1
}
}
if `ngeqs'>0{
disp " "
disp in gr "Regressions of latent variables on covariates"
*disp in smcl in gr "{hline 78}" _n
di in gr _dup(78) "-" _n
disp " "
tempname mngeqs
matrix `mngeqs' = e(mngeqs)
local i = 1
while `i'<=`ngeqs'{
local k = `mngeqs'[1,`i']
local n = `mngeqs'[2,`i']
disp in gr " random effect " in ye `k'-1 in gr " has " in ye `n' in gr " covariates:"
local nxt2 = `nxt'+`n'-1
local j = 1
while `j' <= `n'{
local nna: word `nxt' of `names'
scalar `var'=`b'[1,`nxt']
scalar `se' = sqrt(`V'[`nxt',`nxt'])
disp in gr " `nna': " in ye `var' " (" `se' ")"
local nxt = `nxt' + 1
local j = `j' + 1
}
local i = `i' + 1
}
}
*disp in smcl in gr "{hline 78}" _n
di in gr _dup(78) "-" _n
disp " "
} /* endif toplv >1 */
end
program define sechol
version 6.0
args lev num nxt
* num is number of random effects
local l = `num'*(`num' + 1)/2
*disp "lev = `lev' num = `num' nxt = `nxt' l= `l'"
tempname b V C L zero a H M_nbrf M_nrfc ind
matrix `M_nbrf' = e(nbrf)
matrix `M_nrfc' = e(nrfc)
local iscor = e(cor)
matrix `b' = e(b)
matrix `V' = e(V)
local sof = `M_nrfc'[2,`lev'-1] /* was `M_nrfc'[1,`lev'-1] */
local i = 1
local k = 1
matrix `C' = J(`l',`l',0)
matrix `L' = J(`num',`num',0)
matrix `ind' = `L'
* get L matrix
while `i' <= `num'{
* skip loading parameters
local nb = `M_nbrf'[1,`i'+`sof']
local nxt = `nxt' + `nb' -1
disp "nxt = " `nxt'
matrix `L'[`i',`i'] = `b'[1, `nxt']
* matrix list `L'
matrix `ind'[`i',`i'] = `nxt'
local nxt = `nxt' + 1
local i = `i' + 1
}
local i = 2
while `i' <= `num'&`iscor'==1{
local j = 1
while `j' < `i'{
matrix `L'[`i',`j'] = `b'[1, `nxt']
matrix `ind'[`i',`j'] = `nxt'
local nxt = `nxt' + 1
local j = `j' + 1
}
local i = `i' + 1
}
* disp "L and ind"
* matrix list `L'
* matrix list `ind'
* get C matrix
local ll1 = 1
local i = 1
while `i' <= `num'{
local j = 1
while `j' <= `i'{
local nxt1 = `ind'[`i', `j']
local ll2 = 1
local ii = 1
while `ii' <= `num'{
local jj = 1
while `jj' <= `ii'{
local nxt2 = `ind'[`ii', `jj']
disp "ll1 = " `ll1' " ll2 = " `ll2' " nxt1 = " `nxt1' " nxt2 = " `nxt2'
if `iscor' == 1{
matrix `C'[`ll1', `ll2'] = `V'[`nxt1',`nxt2']
matrix `C'[`ll2', `ll1'] = `C'[`ll1', `ll2']
}
else if `i'==`j'&`ii'==`jj'{
matrix `C'[`ll1', `ll2'] = `V'[`nxt1',`nxt2']
matrix `C'[`ll2', `ll1'] = `C'[`ll1', `ll2']
}
local ll2 = `ll2' + 1
local jj = `jj' + 1
}
local ii = `ii' + 1
}
local ll1 = `ll1' + 1
local j = `j' + 1
}
local i = `i' + 1
}
* disp "C"
* matrix list `C'
matrix `zero' = J(`num', `num', 0)
local k = 1
local i = 1
local n = `num' * (`num' + 1)/2
matrix `H' = J(`n',`n',0)
while `i' <= `num' {
local j = 1
while `j' <= `i'{
* derivative of LL' with respect to i,j th element of L
mat `a' = `zero'
mat `a'[`i',`j'] = 1
mat `a' = `a'*(`L')'
mat `a' = `a' + (`a')'
disp "a"
* matrix list `a'
local ii = 1
local kk = 1
while `ii'<=`num'{
local jj = 1
while `jj' <= `ii'{
matrix `H'[`kk',`k'] = `a'[`ii',`jj']
local jj = `jj' + 1
local kk = `kk' + 1
}
local ii= `ii' + 1
}
local j = `j' + 1
local k = `k' + 1
}
local i = `i' + 1
}
* disp "H"
* matrix list `H'
matrix M_se = `H'*`C'*(`H')'
matrix M_cov = `L'*(`L')'
* matrix list M_se
* matrix list M_cov
end
program define timer
version 6.0
end