simul_confusion/Modules/ado/personal/c/clv212.ado

908 lines
33 KiB
Plaintext

*! Version 2.12 1December2006
*! Jean-Benoit Hardouin
************************************************************************************************************
* Stata program : clv
* Clustering of variables around latent variables
* Version 2.12 : December 1st, 2006 /*savedendro option*/
*
* Historic
* Version 1 (2005-06-11): Jean-Benoit Hardouin
* Version 1.1 (2005-07-07): Jean-Benoit Hardouin /*small bug in the consolidation process with cluster of only one variable*/
* Version 1.2 (2005-07-08): Jean-Benoit Hardouin /*Bug in the consolidation procedure when there is negative correlation*/
* Version 2 (2005-09-03): Jean-Benoit Hardouin /*Horizontal dendrograms (with Stata 9)*/
* Version 2.1 (2005-09-08): Jean-Benoit Hardouin /*More flexibility to abbreviate the names of the variables (with Stata 9)*/
* Version 2.1.1 (2005-09-08): Jean-Benoit Hardouin /*Integration of some requests of Ronan Conroy*/
* Version 2.1.2 (2005-09-08): Jean-Benoit Hardouin /*Possibility to give a title and an X/Y caption*/
* Version 2.2 (2005-09-11): Jean-Benoit Hardouin /*Kernel option*/
* Version 2.3 (2005-09-12): Jean-Benoit Hardouin /*Polychoric option*/
* Version 2.4 (2005-09-13): Jean-Benoit Hardouin /*v2 option*/
* Version 2.5 (2005-09-21): Jean-Benoit Hardouin /*corrections*/
* Version 2.6 (2005-10-02): Jean-Benoit Hardouin /*centroid method, biplot*/
* Version 2.7 (2005-10-06): Jean-Benoit Hardouin /*return, multiple graphs, polychoric+consolidation*/
* Version 2.8 (2005-10-06): Jean-Benoit Hardouin /*fweights*/
* Version 2.9 (2006-01-26): Jean-Benoit Hardouin /*save the latent variables*/
* Version 2.10 (2006-07-10): Jean-Benoit Hardouin /*2nd order relative variation of the T criterion*/
* Version 2.11 (2006-10-09): Jean-Benoit Hardouin /*Size of the text in the dendrogram*/
* Version 2.12 (2006-12-01): Jean-Benoit Hardouin /*savedendro option*/
*
* Jean-benoit Hardouin, University of Nantes - Faculty of Pharmaceutical Sciences
* Department of Biostatistics - France
* jean-benoit.hardouin@univ-nantes.fr
*
* News about this program : http://anaqol.free.fr
* FreeIRT Project : http://freeirt.free.fr
*
* Copyright 2005-2006 Jean-Benoit Hardouin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
************************************************************************************************************
program define clv,rclass
version 9.0
syntax [varlist(default=none)] [if] [in] [fweight] [, CUTnumber(int 40) bar CONSolidation(int 0) noDENdro SAVEDendro(string) noSTANDardized deltaT HORizontal SHOWcount ABBrev(int 14) TITle(string) CAPtion(string) KERnel(numlist) METHod(string) noBIPlot ADDvar genlv(string) replace TEXTSize(string)]
preserve
tempfile clvfile
tempvar id
gen `id'=_n
qui save `clvfile',replace
local matsize=c(matsize)
local none=0
if "`varlist'"=="" {
capture confirm matrix r(vp)
if _rc==0 {
capture confirm matrix r(matclus)
if _rc ==0 {
local none=1
}
}
if `none'==0 {
di in red "You cannot use the {hi:clv} command without {hi:varlist} if you have not already run {hi:clv}"
error 198
exit
}
}
tempname matclus vp indexes
/*********TESTS**********/
if `none'==1 {
matrix `vp'=r(vp)
matrix `matclus'=r(matclus)
local varlist `r(varlist)'
tokenize `varlist'
local nbitems=rowsof(`matclus')
if "`method'"!="" {
di in green "The {hi:method} option can not be modified without specification of the varlist. {hi:method} is omitted."
}
local method `r(method)'
local kernel `r(kernel)'
}
if "`method'"=="" {
local method classical
}
if ("`method'"=="polychoric"|"`method'"=="polychoricv2")&"`standardized'"!="" {
di in green "Initial variables are used with the {hi:polychoric} methods"
di in green "But the procedure is based on the matrix of the polychoric correlations"
di
}
if "`method'"!="classical"&"`method'"!="v2"&"`method'"!="centroid"&"`method'"!="polychoric"&"`method'"!="polychoricv2" {
di in red "The {hi:method} `method' is unknown"
error 198
exit
}
tokenize `varlist'
local nbitems : word count `varlist'
marksample touse
qui keep if `touse'
local mat=max(`matsize',`=`nbitems'*2')
qui set matsize `mat'
if `nbitems'<3&`none'!=1 {
di in red "You need at least 3 variables"
error 198
exit
}
/*******DEFINES THE LABELS AND STANDARDIZED THE VARIABLES (IF NECESSARY)*******/
forvalues i=1/`nbitems'{
local label`i':variable label ``i''
if "`label`i''"=="" {
local label`i' ``i''
}
if "`method'"!="polychoric"&"`method'"!="polychoricv2" {
qui su ``i'' [`weight'`exp']
local mean=r(mean)
if "`standardized'"=="" {
local sd=r(sd)
}
else {
local sd=1
}
qui replace ``i''=(``i''-`mean')/`sd'
}
}
tempfile clvfiletmp
qui save `clvfiletmp',replace
qui su `1' [`weight'`exp']
local nbind=r(sum_w)
local cons=`consolidation'
/*COMPUTES THE TOTAL VARIANCE*/
if "`method'"!="polychoric"&"`method'"!="polychoricv2" {
local totvar=0
forvalues i=1/`nbitems' {
qui su ``i'' [`weight'`exp']
local totvar=`totvar'+`r(Var)'
}
}
else {
local totvar `nbitems'
}
local nbkerk=0
local nbkerg=0
/***** DEFINES THE KERNEL IF NECESSARY ********/
if "`kernel'"!="" {
local nbkerg:word count `kernel'
local fin0=0
forvalues i=1/`nbkerg' {
local nbi`i':word `i' of `kernel'
local nbkerk=`nbkerk'+`nbi`i''
local deb`i'=`fin`=`i'-1''+1
local fin`i'=`deb`i''+`nbi`i''-1
local list`i'
forvalues j=`deb`i''/`fin`i'' {
local list`i' `list`i'' ``j''
}
}
tempname kerclus
matrix `kerclus'=J(`=`nbkerk'-`nbkerg'',3,0)
local ligne=1
forvalues g=1/`nbkerg' {
matrix `kerclus'[`ligne',1]=`nbitems'+`ligne'
matrix `kerclus'[`ligne',2]=`deb`g''
matrix `kerclus'[`ligne',3]=`deb`g''+1
local clus`g'=`nbitems'+`ligne'
local ligne=`ligne'+1
if `nbi`g''>2 {
forvalues i=2/`=`nbi`g''-1' {
matrix `kerclus'[`ligne',1]=`nbitems'+`ligne'
matrix `kerclus'[`ligne',2]=`deb`g''+`i'
matrix `kerclus'[`ligne',3]=`nbitems'+`ligne'-1
local clus`g'=`nbitems'+`ligne'
local ligne=`ligne'+1
}
}
}
}
if `nbitems'<`nbkerk' {
di in red "You cannot define more variables in the {hi:kernel} option than items in the {hi:varlist}"
error 198
exit
}
/*******DISPLAY THE FIRST RESULTS *******/
di
di in green "{hline 32}"
di in green "TOTAL VARIANCE: " in ye %16.5f `totvar'
di in green "NUMBER OF INDIVIDUALS: " in ye %9.0f `nbind'
di in green "METHOD:" in ye _col(`=33-length("`method'")') "`=upper("`method'")'"
di in green "{hline 32}"
di
if "`kernel'"!="" {
forvalues i=1/`nbkerg' {
di in green "The kernel numbered " in ye `clus`i'' in green " is composed of `nbi`i'' variables: " in ye "`list`i''"
di
}
}
else {
local nbkerk=0
local nbkerg=0
}
/******** CLASSIFICATION PROCEDURE*******/
tempname Ev
if `none'!=1 {
matrix `matclus'=J(`nbitems',`nbitems',0)
matrix `vp'=J(`=2*`nbitems'-1',12,0)
matrix `indexes'=J(`nbitems',8,0)
forvalues i=1/`nbitems' {
matrix `matclus'[`i',1]=`i'
if "`method'"!="polychoric"&"`method'"!="polychoric" {
qui su ``i'' [`weight'`exp']
matrix `vp'[`i',10]=r(Var)
}
else {
matrix `vp'[`i',10]=1
}
matrix `vp'[`i',1]=`i'
matrix `vp'[`i',2]=`nbitems'
matrix `vp'[`i',8]=`totvar'
matrix `vp'[`i',9]=100
}
matrix `vp'[`nbitems',5]=`nbitems'
if "`method'"=="centroid" {
local crit G
di in green "{hline 101}"
di in green _col(93) "2nd order"
di in green _col(7) "Number of" _col(69) "`crit'" _col(71) "Explained" _col(82) "Relative" _col(94) "Relative"
di in green "Step" _col(8) "clusters" _col(20) "Child 1" _col(33) "Child 2" _col(46) "Parent" _col(53) "`crit' value" _col(61) "variation" _col(72) "Variance" _col(81) "Variation" _col(93) "Variation"
di in green "{hline 101}"
}
else {
local crit T
di in green "{hline 111}"
if "`method'"=="v2"|"`method'"=="polychoricv2" {
di in green _col(84) "Maximal" _col(103) "2nd order"
}
else {
di in green _col(84) "Current" _col(103) "2nd order"
}
di in green _col(7) "Number of" _col(69) "`crit'" _col(71) "Explained" _col(85) "Second" _col(93) "Relative" _col(104) "Relative"
di in green "Step" _col(8) "clusters" _col(20) "Child 1" _col(33) "Child 2" _col(46) "Parent" _col(53) "`crit' value" _col(61) "variation" _col(72) "Variance" _col(81) "Eigenvalue" _col(92) "Variation" _col(103) "Variation"
di in green "{hline 111}"
}
tempname threshold
matrix `threshold'=J(`nbitems',3,0)
forvalues i=1/`=`nbitems'-1' {
local clus=`nbitems'+`i'
local minegenval=999999
local minegenval2=999999
forvalues k=1/`=`clus'-1' {
local list`k'
local numlist`k'
forvalues j=1/`clus' {
if (`matclus'[`j',`i']==`k') {
local list`k' `list`k'' ``j''
local numlist`k' `numlist`k'' `j'
}
}
}
if `clus'>`nbitems'+`nbkerk'-`nbkerg' {
if "`method'"=="centroid" {
tempname centrj centrk diffjk
}
forvalues j=1/`clus' {
local nblistj:word count `list`j''
forvalues k=`=`j'+1'/`clus' {
local nblistk:word count `list`k''
if `nblistj'!=0&`nblistk'!=0 {
if "`method'"=="centroid" {
qui genscore `list`j'',score(`centrj') mean
qui su `centrj' [`weight'`exp']
local Varj=r(Var)
qui genscore `list`k'',score(`centrk') mean
qui su `centrk' [`weight'`exp']
local Vark=r(Var)
qui gen `diffjk'=`centrk'-`centrj'
qui su `diffjk' [`weight'`exp']
local Varjk=r(Var)
drop `centrj' `centrk' `diffjk'
local ev=(`nblistj'*`nblistk')/(`nblistj'+`nblistk')*`Varjk'
if `ev'<`minegenval' {
local minegenval=`ev'
local minj `j'
local mink `k'
local eigen=0
local eigen2=0
}
}
else {
if "`method'"=="classical"|"`method'"=="v2" {
qui pca `list`j'' `list`k'' [`weight'`exp'] ,cov
matrix `Ev'=e(Ev)
}
else if "`method'"=="polychoric"|"`method'"=="polychoricv2" {
qui polychoricpca `list`j'' `list`k'' [`weight'`exp']
matrix `Ev'=r(eigenvalues)
}
local lambda1=`Ev'[1,1]
local lambda2=`Ev'[1,2]
local ev=`vp'[`j',10]+`vp'[`k',10]-`lambda1'
local ev2=max(`vp'[`j',11],`vp'[`k',11],`lambda2')
if ("`method'"=="v2"|"`method'"=="polychoricv2")&`ev'<`minegenval' {
local minegenval=`ev'
local eigen=`lambda1'
local minj `j'
local mink `k'
local eigen2=`lambda2'
}
else if ("`method'"=="classical"|"`method'"=="polychoric")&`ev2'<`minegenval2' {
local minegenval=`ev'
local minegenval2=`ev2'
local eigen=`lambda1'
local minj `j'
local mink `k'
local eigen2=`ev2'
}
}
}
}
}
}
else {
local ligne=`clus'-`nbitems'
local j=`kerclus'[`ligne',2]
local k=`kerclus'[`ligne',3]
if "`method'"!="centroid" {
if "`method'"=="classical"|"`method'"=="v2" {
qui pca `list`j'' `list`k'' [`weight'`exp'],cov
matrix `Ev'=e(Ev)
}
else if "`method'"=="polychoric"|"`method'"=="polychoricv2"{
qui polychoricpca `list`j'' `list`k'' [`weight'`exp']
matrix `Ev'=r(eigenvalues)
}
local lambda1=`Ev'[1,1]
local lambda2=`Ev'[1,2]
local ev=`vp'[`j',10]+`vp'[`k',10]-`lambda1'
local minegenval=`ev'
local eigen=`lambda1'
local minj `j'
local mink `k'
local eigen2=`lambda2'
}
else if "`method'"=="centroid" {
local nblistj:word count `list`j''
local nblistk:word count `list`k''
tempname v1 v2 v12
qui genscore `list`j'',score(`v1') mean
qui genscore `list`k'',score(`v2') mean
qui gen `v12'=`v1'-`v2'
qui su `v12' [`weight'`exp']
local varj=r(Var)
local minegenval=(`nblistj'*`nblistk')/(`nblistj'+`nblistk')*`varj'
local minj `j'
local mink `k'
}
}
if `minj'<=`nbitems' {
local nomj=abbrev("``minj''",14)
}
else {
local nomj `minj'
}
if `mink'<=`nbitems' {
local nomk=abbrev("``mink''",14)
}
else {
local nomk `mink'
}
forvalues j=1/`nbitems' {
matrix `matclus'[`j',`=`i'+1']=`matclus'[`j',`i']
}
matrix `vp'[`clus',1]=`nbitems'+`i' /*PARENT*/
matrix `vp'[`clus',2]=`=`nbitems'-`i'' /*NUMBER OF CLUSTERS*/
matrix `vp'[`clus',3]=`minj' /*CHILD 1*/
matrix `vp'[`clus',4]=`mink' /*CHILD 2*/
matrix `vp'[`clus',6]=`minegenval' /*VARIATION OF THE T or G CRITERION*/
matrix `vp'[`clus',5]=`vp'[`=`clus'-1',5]-`vp'[`clus',6] /*T or G CRITERION*/
matrix `vp'[`clus',7]=(`vp'[`clus',6]-`vp'[`=`clus'-1',6])/`vp'[`=`clus'-1',6] /*RELATIVE VARIATION OF THE T OR G CRITERION*/
matrix `vp'[`clus',8]=`vp'[`=`clus'-1',8]-`minegenval' /*EXPLAINED VARIANCE*/
matrix `vp'[`clus',9]=`vp'[`clus',8]/`totvar'*100 /*% OF EXPLAINED VARIANCE*/
if "`method'"!="centroid" {
matrix `vp'[`clus',10]=`eigen' /*FIRST EIGEN VALUE OF THE NEW CLUSTER*/
matrix `vp'[`clus',11]=`eigen2' /*SECOND EIGEN VALUE OF THE NEW CLUSTER*/
}
if `vp'[`=`clus'-1',7]!=0 {
matrix `vp'[`clus',12]=(`vp'[`clus',7]-`vp'[`=`clus'-1',7])/abs(`vp'[`=`clus'-1',7]) /*2ND ORDER RELATIVE VARIATION OF THE T or G CRITERION*/
}
matrix `indexes'[`i',1]=`i' /*PARENT*/
matrix `indexes'[`i',2]=`nbitems'-`i' /*NUMBER OF CLUSTERS*/
matrix `indexes'[`i',3]=`minegenval' /*VARIATION OF THE T or G CRITERION*/
matrix `indexes'[`i',4]=`vp'[`clus',7] /*RELATIVE VARIATION OF THE T OR G CRITERION*/
matrix `indexes'[`i',5]=max(`eigen2',`indexes'[`=`i'-1',5]) /*MAXIMUM SECOND EIGENVALUE*/
matrix `indexes'[`i',7]=`vp'[`clus',12] /*2nd order RELATIVE VARIATION OF THE T OR G CRITERION*/
foreach j of numlist `numlist`minj'' `numlist`mink'' {
matrix `matclus'[`j',`=`i'+1']=`clus'
}
local varlistgen
local nbvarlistgen
forvalues j=1/`=`nbitems'+`i'' {
local varlist`j'
forvalues k=1/`nbitems' {
if `matclus'[`k',`=`i'+1']==`j' {
local varlist`j' `varlist`j'' ``k''
}
}
local nbvarlist`j': word count `varlist`j''
local varlistgen `varlistgen' `varlist`j''
local nbvarlistgen `nbvarlistgen' `nbvarlist`j''
}
local newlist
foreach m in `nbvarlistgen' {
if `m'!=0 {
local newlist `newlist' `m'
}
}
if "`kernel'"!=""&`i'==`=`nbkerk'-`nbkerg'+1' {
local T=`vp'[`=`clus'-1',8]
di _col(0) in ye "init" _col(12) %4.0f `=`nbitems'-`nbkerk'+`nbkerg'' _col(52) %8.4f `T' _col(62) %8.4f `=`totvar'-`T'' _col(72) %7.3f `=`T'/`totvar'*100' "%"
}
if `clus'>`nbitems'+`nbkerk'-`nbkerg' {
matrix `threshold'[`=`nbitems'-`i'+1',3]=`minegenval'
if `clus'==`nbitems'+`nbkerk'-`nbkerg'+1 {
local relv
local percent
local relv2
}
else {
local relv=`indexes'[`i',4]*100
local percent %
if `indexes'[`i',7]!=. {
local relv2=`indexes'[`i',7]*100
}
else {
local relv2=0
}
matrix `threshold'[`=`nbitems'-`i'+1',1]=`relv'
matrix `threshold'[`=`nbitems'-`i'+1',2]=`relv2'
}
if "`method'"=="centroid" {
di _col(0) in ye %4.0f `=`i'-`nbkerk'+`nbkerg'' _col(12) %4.0f `=`nbitems'-`i'' _col(20) "`nomj'" _col(33) "`nomk'" _col(45) %7.0f `=`i'+`nbitems'' _col(52) %8.4f `vp'[`clus',8] _col(62) %8.4f `minegenval' _col(72) %7.3f `vp'[`clus',9] "%" _col(83) _col(84) %5.2f `relv' "`percent'" _col(93) %8.2f `relv2' "`percent'"
}
else {
di _col(0) in ye %4.0f `=`i'-`nbkerk'+`nbkerg'' _col(12) %4.0f `=`nbitems'-`i'' _col(20) "`nomj'" _col(33) "`nomk'" _col(45) %7.0f `=`i'+`nbitems'' _col(52) %8.4f `vp'[`clus',8] _col(62) %8.4f `minegenval' _col(72) %7.3f `vp'[`clus',9] "%" _col(83) %8.4f `vp'[`clus',11] _col(94) %6.2f `relv' "`percent'" _col(103) %8.2f `relv2' "`percent'"
}
}
}
matrix `indexes'[`nbitems',3]=`vp'[`=2*`nbitems'-1',5] /*RELATIVE VARIATION OF THE T OR G CRITERION*/
matrix `indexes'[`nbitems',7]=`indexes'[`nbitems',3]/`indexes'[`=`nbitems'-1',3] /*RELATIVE VARIATION OF THE T OR G CRITERION*/
local i=2*`nbitems'-1
matrix `threshold'[1,1]=`vp'[`i',5]/`vp'[`i',6]*100-100
matrix `threshold'[1,2]=(`threshold'[1,1]-`threshold'[2,1])/abs(`threshold'[2,1])*100
matrix `threshold'[1,3]=`vp'[`i',5]
if "`method'"=="centroid" {
di in ye _col(62) %8.4f `threshold'[1,3] _col(83) %6.2f `threshold'[1,1] "`percent'" _col(93) %8.2f `threshold'[1,2] "`percent'"
}
else {
di in ye _col(62) %8.4f `threshold'[1,3] _col(94) %6.2f `threshold'[1,1] "`percent'" _col(103) %8.2f `threshold'[1,2] "`percent'"
}
local best=0
local maxbest=0
local best2=0
local maxbest2=0
local demipart=int(`nbitems'/2)+1
forvalues i=1/`demipart' {
if `threshold'[`i',3]>`maxbest2' {
if `threshold'[`i',3]>`maxbest' {
local maxbest2=`maxbest'
local best2=`best'
local maxbest=`threshold'[`i',3]
local best=`i'
}
else {
local maxbest2=`threshold'[`i',3]
local best2=`i'
}
}
}
di in green "{hline 111}"
di
di in green "{hline 60}"
di in green "PROPOSED BEST PARTITIONS (AMONG THE `demipart' SMALLER PARTITIONS)"
di in green "{hline 60}"
di
di in yellow _col(4) "Based on the variation of the T criterion: " _col(60) in gr "Partitions in " in ye `best' " or " `best2' in gr " clusters"
return local bestvariation `best' `best2'
local bestt=0
local bestt2=0
local var=0
local var2=0
forvalues i=1/`nbitems' {
if `threshold'[`i',1]>`var2'&`i'<`demipart' {
if `threshold'[`i',1]>`var' {
local bestt2=`bestt'
local var2=`var'
local var=`threshold'[`i',1]
local bestt=`i'
}
else {
local var2=`threshold'[`i',1]
local bestt2=`i'
}
}
}
di in yellow _col(4) "Based on the research of a threshold: " _col(60) in gr "Partitions in " in ye `bestt' " or " `bestt2' in gr " clusters"
forvalues i=`=`nbitems'+1'/`=`nbitems'+`nbkerk'-`nbkerg'' {
matrix `vp'[`i',6]=`totvar'-`T'
matrix `vp'[`i',8]=`T'
matrix `vp'[`i',9]=`T'/`nbitems'*100
}
return local bestthresold `bestt' `bestt2'
forvalues i=1/`nbitems' {
if `threshold'[`i',2]>`var2'&`i'<`demipart' {
if `threshold'[`i',2]>`var' {
local bestt2=`bestt'
local var2=`var'
local var=`threshold'[`i',2]
local bestt=`i'
}
else {
local var2=`threshold'[`i',2]
local bestt2=`i'
}
}
}
di in yellow _col(4) "Based on the research of a threshold (second order): " _col(60) in gr "Partitions in " in ye `bestt' " or " `bestt2' in gr " clusters"
return local bestthresold2 `bestt' `bestt2'
}
/******BAR CHART *******/
if "`bar'"!="" {
drop _all
qui set obs `nbitems'
qui svmat `indexes' ,names(v)
qui gen id=`nbitems'-_n
qui replace v7=. in 1
qui drop if id>`nbitems'-`nbkerk'+`nbkerg'-1
label variable id "Number of clusters"
label variable v3 "T variation"
qui su v3 if id!=0
local maxv3=ceil(r(max)*5)/5
local minv3=floor(r(min)*5)/5
label variable v4 "Relative T variation"
label variable v7 "Relative T variation order 2"
graph twoway (bar v3 id, name(bar,replace) vert yaxis(1))(line v4 id,yaxis(2))/*(line v6 id,yaxis(3))(line v5 id,yaxis(4))*/(line v7 id,yaxis(5)) if id!=0,ylabel(`minv3'(0.2)`maxv3') xlabel(1(1)`=`nbitems'-`nbkerk'+`nbkerg'-1')
}
/****** DENDROGRAM********/
drop _all
qui set obs `nbitems'
qui svmat `matclus' ,names(v)
local listorder
forvalues i=`nbitems'(-1)1 {
local listorder `listorder' v`i'
}
qui gen id=_n
qui sort `listorder'
capture cluster delete clv,zap
qui cluster complete v* ,name(clv)
qui replace clv_id=_n
qui replace clv_ord=id
qui replace clv_hgt=.
qui gen fait=0
qui gen clus=0
forvalues i=2/`nbitems' {
local ligne=`nbitems'+`i'-1
if (`vp'[`ligne',3]<=`nbitems') {
local first=`vp'[`ligne',3]
gsort +fait -v`i' +clv_id
}
else {
local first=`vp'[`ligne',4]
gsort +fait -v`i' +clv_id
}
if "`deltaT'"!="" {
qui replace clv_hgt=`vp'[`ligne',6] in 1
}
else {
qui replace clv_hgt=100-`vp'[`ligne',9] in 1
}
qui replace fait=1 in 1
qui replace clus=`vp'[`ligne',1] in 1
}
if "`dendro'"=="" {
qui gen label=""
forvalues i=1/`nbitems' {
qui replace label=abbrev("`label`i''",`abbrev') if clv_id==`i'
}
sort clv_id
if `nbitems'>`cutnumber' {
local var "Groups of variables"
local cut cutnumber(`cutnumber') /*labcutn*/
}
else {
local var "Variables"
local cut label(label)
}
qui su clv_hgt
local tmp=r(max)
local max=floor(`tmp')+.5
if `tmp'>`max' {
local max=`max'+.5
}
local maxvar=`max'+5
if "`title'"=="" {
local title "Clustering around Latent Variables (CLV)"
}
if "`caption'"!="" {
local var "`caption'"
}
if "`deltaT'"!="" {
local titleL "Variation of the T criterion"
local yl "0(.5)`max'"
}
else {
local titleL "% Unexplained Variance"
local yl "0(25)`maxvar'"
}
if "`textsize'"=="" {
local textsize: word `=min(int(`nbitems'/15)+1,5)' of medium medsmall small vsmall tiny
}
if "`horizontal'"!="" {
cluster dendro clv, name (dendrogram,replace) hor ytitle("`var'") `showcount' xtitle("`titleL'") title("`title'",span) xlabel(`yl') ylabel(,angle(0) labsize(`textsize')) `cut'
}
else {
cluster dendro clv, name(dendrogram,replace) xtitle("`var'") `showcount' ytitle("`titleL'") title("`title'",span) ylabel(`yl') xlabel(,labsize(`textsize')) `cut'
}
if "`savedendro'"!="" {
graph save dendrogram `savedendro'
}
}
/***** END DENDROGRAM*****/
/**** TEST ********/
if `cons'>`nbitems'-`nbkerk'+`nbkerg' {
di in ye "The {hi:consolidation} is not possible for a number of clusters superior to the initial number of clusters"
local cons=0
}
/***** CONSOLIDATION PROCEDURE ********/
if `cons'!=0 {
sort v`=`nbitems'-`cons'+1'
gen cut`cons'=1
local g=1
forvalues i=2/`nbitems' {
if v`=`nbitems'-`cons'+1'[`i']!=v`=`nbitems'-`cons'+1'[`=`i'-1'] {
local g=`g'+1
}
qui replace cut`cons'=`g' in `i'
}
sort id
tempname group
mkmat cut`cons',matrix(`group')
use `clvfiletmp',replace
local n=1
local env=1
while (`env'==1) {
forvalues g=1/`cons' {
local list`g'
forvalues i=1/`nbitems' {
if `group'[`i',1]==`g' {
local list`g' `list`g'' ``i''
}
}
}
di
if `n'==1 {
di in green "{hline 30}"
di in green "PARTITION BEFORE CONSOLIDATION"
di in green "{hline 30}"
}
di
local col=13
local max=0
local critT=0
forvalues g=1/`cons' {
di _col(`col') in green "CLUSTER " %2.0f `g' _c
local col=`col'+12
local tmp`g':word count `list`g''
if `tmp`g''>`max' {
local max `tmp`g''
}
tempvar f1`g'
if "`method'"=="centroid" {
qui genscore `list`g'',score(`f1`g'') mean
qui su `f1`g'' [`weight'`exp']
local var=r(Var)
local critT=`critT'+`tmp`g''*`var'
}
else {
if `tmp`g''>1 {
if "`method'"=="classical"|"`method'"=="v2" {
qui pca `list`g'' [`weight'`exp'] ,cov
matrix `Ev'=e(Ev)
local trace=e(trace)
qui predict `f1`g''
}
else if "`method'"=="polychoric"|"`method'"=="polychoric" {
qui polychoricpca `list`g'' [`weight'`exp'] ,score(`f1`g'') nscore(1)
matrix `Ev'=r(eigenvalues)
local trace=0
forvalues m=1/`tmp`g''{
local trace =`trace'+`r(lambda`m')'
}
rename `f1`g''1 `f1`g''
}
local lambda1=`Ev'[1,1]
local explained`g'=`lambda1'/`trace'
local critT=`critT'+`lambda1'
}
else {
local explained`g'=1
qui gen `f1`g''=`list`g''
if "`standardized'"=="" {
local critT=`critT'+1
}
else {
qui su [`weight'`exp']
local critT=`critT'+`r(Var)'
}
}
}
}
di
di _col(1) in green "ITEMS :" _c
forvalues i=1/`max' {
local col=15
forvalues g=1/`cons' {
local tmpv:word `i' of `list`g''
local tmpv=abbrev("`tmpv'",8)
di _col(`col') in ye %8s "`tmpv'" _c
local col= `col'+12
}
di
}
local col=16
di _col(1) in green "Expl. Var:" _c
forvalues g=1/`cons' {
di _col(`col') in ye %6.2f `=`explained`g''*100' in green "%" _c
local col= `col'+12
}
di
di
di in green "Variance Explained : " in ye %6.3f `=`critT'/`totvar'*100' in green "%"
di in green "T criterion : " in ye %6.4f `critT'
di
di in green "{hline 21}"
di in green "CONSOLIDATION: STEP `n'"
di in green "{hline 21}"
local n=`n'+1
local env=0
if "`method'"=="polychoric"|"`method'"=="polychoricv2" {
local command polychoric
}
else {
local command corr
}
forvalues i=1/`nbitems' {
local env`i'=0
local gr=`group'[`i',1]
qui `command' ``i'' `f1`gr'' [`weight'`exp']
local corr`i'=r(rho)
local corrs`i'=r(rho)
forvalues g=1/`cons' {
qui `command' ``i'' `f1`g'' [`weight'`exp']
local tmpcorr=r(rho)
if `g'!=`gr'&(((`corr`i'')<(`tmpcorr')&"`method'"=="centroid")|((`corr`i'')^2<(`tmpcorr')^2& "`method'"!="centroid")) {
local env=1
local env`i'=1
matrix `group'[`i',1]=`g'
local corr`i'=`tmpcorr'
}
}
if `env`i''==1 {
local g=`group'[`i',1]
di in green "The variable " in ye "``i'' " in green "is assigned to the `g'th group" _c
if "`method'"!="centroid" {
di in green " (corr^2=" %6.4f in ye (`corr`i'')^2 in green " vs " in ye %6.4f (`corrs`i'')^2 in green ")"
}
else {
di in green " (corr=" %6.4f in ye (`corr`i'') in green " vs " in ye %6.4f (`corrs`i'') in green ")"
}
}
}
if `env'==0 {
local latent
forvalues g=1/`cons' {
label variable `f1`g'' "Latent variable `g'"
if "`genlv'"!="" {
if "`replace'"!=""{
capture drop `genlv'`g'
}
gen `genlv'`g'=`f1`g''
}
local latent `latent' `f1`g''
return local cluster`g' `list`g''
}
matrix `group'=`group''
matrix colnames `group'=`varlist'
return matrix affect=`group'
di in ye "Stability of the partition is achieved"
if `cons'<=7 {
di
di in green "{hline 42}"
di in green "CORRELATION MATRIX OF THE LATENT VARIABLES"
di in green "{hline 42}"
di
di in green "{hline `=(`cons')*13+15'}"
forvalues g=1/`cons' {
di _col(`=13*(`g'-1)+23') in green "Latent" _c
}
di
forvalues g=1/`cons' {
di _col(`=13*(`g'-1)+19') in green "variable `g'" _c
}
di
di in green "{hline `=(`cons')*13+15'}"
forvalues g=1/`cons' {
di in green "Latent variable `g'" _c
forvalues h=1/`g' {
local loc=13*`h'+10
qui corr `f1`g'' `f1`h'' [`weight'`exp']
local rho=r(rho)
di _col(`loc') in ye %6.4f `rho' _c
}
di
}
di in green "{hline `=(`cons')*13+15'}"
di
}
if `nbind'<=800&"`biplot'"==""&"`weight'"=="" {
local max=max(`matsize',`nbind')
set matsize `max'
if "`addvar'"!="" {
local add `varlist'
}
qui biplotvlab `latent' `add', name(biplot,replace) norow colopts(name(latent variables)) alpha(0) title(Biplot of the latent variables) labdes(size(vsmall) color(blue)) stretch(1)
}
else if `nbind'>800&"`biplot'"==""&"`weight'"==""{
di in green "There is more than 800 individuals, so the {hi:biplot} option is disabled"
}
else if "`weight'"!=""&&"`biplot'"==""{
di in green "The {hi:biplot} option is disabled because you use weights"
}
}
forvalues g=1/`cons' {
drop `f1`g''
}
}
}
/***** END OF THE CONSOLIDATION PROCEDURE********/
set matsize `matsize'
if "`genlv'"!="" {
qui keep `id' `genlv'1-`genlv'`cons'
tempfile lvfile
qui sort `id'
qui save `lvfile',replace
}
use `clvfile',replace
if "`genlv'"!="" {
qui sort `id'
qui merge `id' using `lvfile'
}
qui drop `id'
capture drop _merge
capture cluster delete clv,zap
matrix colnames `vp'="Parent" "Number of clusters" "Child 1" "Child 2" "T" "DeltaT" "deltaT" "Explained Variance" "Explained Variance (%)" "First eigenvalue" "Second Eigenvalue" "2nd order deltaT"
return matrix vp=`vp'
return matrix matclus=`matclus'
return local varlist `varlist'
return local method `method'
return local kernel `kernel'
restore,not
end