247 lines
10 KiB
R
247 lines
10 KiB
R
## File Name: pcm.R
|
|
## File version: 1.0
|
|
|
|
#' Compute Partial Credit Model (PCM) for polytomous and dichotomous items
|
|
#'
|
|
#' This function computes a frequentist PCM, potentially accounting for DIF on specified items
|
|
#'
|
|
#' @param df data.frame containing the data
|
|
#' @param items vector containing the names of columns where item responses are stored in df
|
|
#' @param grp string containing the name of the column where an optional group membership variable is stored in df
|
|
#' @param dif.items vector containing the list of indexes in "items" corresponding to dif items
|
|
#' @param type.dif vector containing DIF form for each item specified in dif.items. 1 is homogeneous DIF, 0 is heterogeneous DIF
|
|
#' @param verbose set to TRUE to print a detailed output, FALSE otherwise
|
|
#' @param fit string determining the optimization algorithm. Values "ucminf" or "nlminb" ar recommended
|
|
#' @param method.theta string determining the estimation method for individual latent variable values. Either "eap", "mle" or "wle"
|
|
#' @return A data.frame containing various model outputs
|
|
#' @import vcrpart
|
|
#' @import PP
|
|
#' @export
|
|
|
|
pcm <- function(df=NULL,items=NULL,grp=NULL,dif.items=NULL,type.dif=NULL,verbose=T,fit="ucminf",method.theta="eap") {
|
|
##### Detecting errors
|
|
|
|
if (any(!(items %in% colnames(df)))) {
|
|
stop("ERROR: provided item name does not exist in df")
|
|
}
|
|
if (any(!(grp %in% colnames(df)))) {
|
|
stop("ERROR: provided group variable name does not exist in df")
|
|
}
|
|
if (any(!is.null(grp))) {
|
|
if (any(!(grp%in%colnames(df)))) {
|
|
stop("ERROR: group name does not exist in df")
|
|
}
|
|
}
|
|
if (!is.null(dif.items) & length(dif.items)!=length(type.dif)) {
|
|
stop('ERROR: type.dif is not the same length as dif.items')
|
|
}
|
|
if (!is.null(dif.items) & is.null(type.dif)) {
|
|
warning("WARNING: no type.dif provided, assuming non-homogeneous DIF on all items")
|
|
}
|
|
if (!("id"%in%colnames(df))) {
|
|
stop('ERROR: no column named id provided')
|
|
}
|
|
if ( any(apply(df[df[,grp]==0,items],2,max)<max(df[,items])) | any(apply(df[df[,grp]==1,items],2,max)<max(df[,items])) ) {
|
|
if (fit=="ucminf") {
|
|
fit <- "optim"
|
|
}
|
|
}
|
|
##### Analysis
|
|
restab.diftype <- NULL
|
|
se.beta <- NULL
|
|
beta.ci <- NULL
|
|
beta.p <- NULL
|
|
nbitems <- length(items)
|
|
items_o <- items
|
|
colnames(df)[which(colnames(df)%in%items_o)] <- paste0("item",1:nbitems)
|
|
items <- paste0("item",1:nbitems)
|
|
# If no group
|
|
if (is.null(grp)) {
|
|
if (verbose) {
|
|
cat('\n')
|
|
cat("#################################################################################################\n")
|
|
cat("######################################### FITTING MODEL #########################################\n")
|
|
cat("#################################################################################################\n")
|
|
}
|
|
grp <- NULL
|
|
# prepare data
|
|
df <- df[,c('id',items)]
|
|
print(df)
|
|
colnames(df)[2:(length(colnames(df)))] <- paste0("item",seq(1,length(colnames(df))-1))
|
|
df.long <- reshape(df,v.names=c("item"),direction="long",varying=c(items))
|
|
colnames(df.long) <- c("id","item","resp")
|
|
nbitems <- length(2:(length(colnames(df))))
|
|
maxmod <- max(df[,2:(length(colnames(df)))])
|
|
df.long$item <- factor(df.long$item,levels=seq(1,length(colnames(df))-1),ordered = F)
|
|
df.long$resp <- factor(df.long$resp,0:maxmod,ordered=T)
|
|
df.long$id <- factor(df.long$id)
|
|
# fit pcm
|
|
mod <- olmm(resp ~ 0 + ce(item) + re(0|id),data=df.long,family = adjacent(link = "logit"))
|
|
comod <- coef(mod)
|
|
# output results
|
|
restab <- t(sapply(1:nbitems,function(x) comod[seq(x,length(comod)-1,nbitems)]))
|
|
rownames(restab) <- paste0("item",1:nbitems)
|
|
colnames(restab) <- paste0("delta_",1:maxmod)
|
|
restab.dif <- NULL
|
|
beta <- NULL
|
|
}
|
|
# If group
|
|
else {
|
|
grp <- df[,grp]
|
|
df$grp <- grp
|
|
|
|
# If group and DIF
|
|
if (!is.null(dif.items)) {
|
|
if (verbose) {
|
|
cat('\n')
|
|
cat("#################################################################################################\n")
|
|
cat("######################################### FITTING MODEL #########################################\n")
|
|
cat("#################################################################################################\n")
|
|
}
|
|
# prepare data
|
|
df <- df[,c('id',items,"grp")]
|
|
colnames(df)[2:(length(colnames(df))-1)] <- paste0("item",seq(1,length(colnames(df))-2))
|
|
df.long <- reshape(df,v.names=c("item"),direction="long",varying=c(items))
|
|
colnames(df.long) <- c("id","grp","item","resp")
|
|
nbitems <- length(2:(length(colnames(df))-1))
|
|
maxmod <- max(df[,2:(length(colnames(df))-1)])
|
|
df.long$item <- factor(df.long$item,levels=seq(1,length(colnames(df))-2),ordered = F)
|
|
df.long$resp <- factor(df.long$resp,0:maxmod,ordered=T)
|
|
df.long$id <- factor(df.long$id)
|
|
|
|
# Create 1 dif column per dif item
|
|
for (i in 1:length(dif.items)) {
|
|
df.long[,paste0("dif",i)] <- ifelse(df.long$item==dif.items[i],1,0)
|
|
}
|
|
difvar <- sapply(1:length(dif.items),function(x) paste0("dif",x))
|
|
difvar.unif <- difvar[type.dif==1]
|
|
difvar.nonunif <- difvar[type.dif==0]
|
|
# fit pcm
|
|
formudif <- paste0("resp ~ 0 + ge(grp",ifelse(length(difvar.unif>0),"+",""),ifelse(length(difvar.unif>0),paste0(difvar.unif,":grp",collapse="+"),""),")+ce(item",ifelse(length(difvar.nonunif>0),"+",""),ifelse(length(difvar.nonunif)>0,paste0(difvar.nonunif,":grp",collapse="+"),""),")+re(0|id)")
|
|
formudif <- as.formula(formudif)
|
|
mod <- olmm(formudif,data=df.long,family = adjacent(link = "logit"),control=olmm_control(fit=fit))
|
|
comod <- coef(mod)
|
|
# output results
|
|
nbcoef <- nbitems+length(difvar.nonunif)
|
|
restab <- t(sapply(1:nbcoef,function(x) comod[seq(x,length(comod)-2-length(difvar.unif),nbitems+length(difvar.nonunif))]))
|
|
difcoef.unif <- NULL
|
|
if (length(difvar.unif)>0) {
|
|
difcoef.unif <- comod[(length(comod)-length(difvar.unif)):(length(comod)-1)]
|
|
if (length(difvar.unif)!=1) {
|
|
difcoef.unif <- as.matrix(difcoef.unif)
|
|
} else {
|
|
difcoef.unif <- t(as.matrix(difcoef.unif))
|
|
}
|
|
rname <- paste0("item",dif.items[type.dif==1])
|
|
rownames(difcoef.unif) <- paste0("dif.",items_o[which(items%in%rname)])
|
|
colnames(difcoef.unif) <- "gamma"
|
|
difcoef.unif <- as.data.frame(difcoef.unif)
|
|
for (k in 1:maxmod) {
|
|
difcoef.unif[,paste0("gamma_",k)] <- difcoef.unif[,"gamma"]
|
|
}
|
|
difcoef.unif <- as.matrix(difcoef.unif[,2:ncol(difcoef.unif)])
|
|
}
|
|
difcoef.nonunif <- NULL
|
|
if (length(difvar.nonunif)>0) {
|
|
difcoef.nonunif <- restab[nbitems+c(1:length(difvar.nonunif)),]
|
|
if (length(difvar.nonunif)==1) {
|
|
difcoef.nonunif <- t(as.matrix(difcoef.nonunif))
|
|
} else {
|
|
difcoef.nonunif <- as.matrix(difcoef.nonunif)
|
|
}
|
|
rname <- paste0("item",dif.items[type.dif==0])
|
|
rownames(difcoef.nonunif) <- paste0("dif.",items_o[which(items%in%rname)])
|
|
colnames(difcoef.nonunif) <- paste0("gamma_",1:maxmod)
|
|
}
|
|
restab <- restab[1:nbitems,]
|
|
rownames(restab) <- items_o
|
|
colnames(restab) <- paste0("delta_",1:maxmod)
|
|
restab.dif <- rbind(difcoef.nonunif,difcoef.unif)
|
|
restab.diftype <- matrix(ifelse(type.dif==1,"HOMOGENEOUS","NON-HOMOGENEOUS"))
|
|
restab.diftype <- noquote(restab.diftype)
|
|
rownames(restab.diftype) <- rownames(restab.dif)
|
|
colnames(restab.diftype) <- "dif.type"
|
|
beta <- comod["grp"]
|
|
se.beta <- (confint(mod)["grp",2]-beta)/1.96
|
|
beta.ci <- confint(mod)["grp",]
|
|
beta.p <- 2*pnorm(-abs(beta/se.beta))
|
|
beta <- as.numeric(beta)
|
|
se.beta <- as.numeric(se.beta)
|
|
beta.p <- as.numeric(beta.p)
|
|
beta <- -1*beta
|
|
beta.ci <- -1*c(beta.ci[2],beta.ci[1])
|
|
|
|
} else {
|
|
# If group no DIF
|
|
if (verbose) {
|
|
cat('\n')
|
|
cat("#################################################################################################\n")
|
|
cat("######################################### FITTING MODEL #########################################\n")
|
|
cat("#################################################################################################\n")
|
|
}
|
|
# prepare data
|
|
df <- df[,c('id',items,"grp")]
|
|
colnames(df)[2:(length(colnames(df))-1)] <- paste0("item",seq(1,length(colnames(df))-2))
|
|
df.long <- reshape(df,v.names=c("item"),direction="long",varying=c(items))
|
|
colnames(df.long) <- c("id","grp","item","resp")
|
|
nbitems <- length(2:(length(colnames(df))-1))
|
|
maxmod <- max(df[,2:(length(colnames(df))-1)])
|
|
df.long$item <- factor(df.long$item,levels=seq(1,length(colnames(df))-2),ordered = F)
|
|
df.long$resp <- factor(df.long$resp,0:maxmod,ordered=T)
|
|
df.long$id <- factor(df.long$id)
|
|
# fit pcm
|
|
mod <- olmm(resp ~ 0 + ge(grp) + ce(item) + re(0|id),data=df.long,family = adjacent(link = "logit"),control=olmm_control(fit=fit))
|
|
comod <- coef(mod)
|
|
# output results
|
|
restab <- t(sapply(1:nbitems,function(x) comod[seq(x,length(comod)-2,nbitems)]))
|
|
rownames(restab) <- items_o
|
|
colnames(restab) <- paste0("delta_",1:maxmod)
|
|
restab.dif <- NULL
|
|
beta <- comod[length(comod)-1]
|
|
se.beta <- (confint(mod)["grp",2]-beta)/1.96
|
|
beta.ci <- confint(mod)["grp",]
|
|
beta.p <- 2*pnorm(-abs(beta/se.beta))
|
|
beta <- as.numeric(beta)
|
|
se.beta <- as.numeric(se.beta)
|
|
beta.p <- as.numeric(beta.p)
|
|
beta <- -1*beta
|
|
beta.ci <- -1*c(beta.ci[2],beta.ci[1])
|
|
}
|
|
|
|
}
|
|
if (method.theta=="eap") {
|
|
theta <- c(-1*ranef(mod,norm=F)+ifelse(grp==1,beta,0))
|
|
} else if (method.theta=="wle") {
|
|
theta <- PP::PP_gpcm(as.matrix(df[,items]),t(restab),rep(1,length(items)))$resPP$resPP[,1]
|
|
} else if (method.theta=="mle") {
|
|
theta <- PP::PP_gpcm(as.matrix(df[,items]),t(restab),rep(1,length(items)),type="mle")$resPP$resPP[,1]
|
|
}
|
|
resid <- apply(matrix(1:nbitems,ncol=length(nbitems)),1, function(k) sapply(1:nrow(df), function(j) res_ij(theta[j],restab[k,],df[j,items[k]],beta=0)))
|
|
colnames(resid) <- items_o
|
|
|
|
##### Output
|
|
if (verbose) {
|
|
cat(paste0('Number of individuals: ',nrow(df),"\n"))
|
|
cat(paste0('Number of items: ',length(items),"\n"))
|
|
cat(paste0('Item Thresholds and DIF parameters: ',"\n"))
|
|
}
|
|
|
|
|
|
out <- list(
|
|
beta=beta,
|
|
beta.se=se.beta,
|
|
beta.ci=beta.ci,
|
|
beta.p=beta.p,
|
|
dif.items=dif.items,
|
|
dif.type=restab.diftype,
|
|
thresholds=restab,
|
|
dif.param=restab.dif,
|
|
theta=theta,
|
|
residuals=resid
|
|
)
|
|
return(out)
|
|
}
|
|
|
|
|
|
|