model { for (i in 1:n) { for (j in 1:p) { Y[i,j] ~ dcat(prob[i,j,1:K[j]]) } theta[i] ~ dnorm(0,1) } for (i in 1:n) { for (j in 1:p) { for (k in 1:K[j] ) { eta[i,j,k] <- theta[i] - delta[j,k] psum[i,j,k] <- sum(eta[i,j,1:k]) exp.psum[i,j,k] <- exp(psum[i,j,k]) prob[i,j,k] <- exp.psum[i,j,k] / sum(exp.psum[i,j,1:K[j]]) } } } for (j in 1:p) { delta[j,1] <- 0.0 for (k in 2:K[j]) { delta[j,k] ~ dnorm(m.delta, pr.delta) } } pr.delta <- pow(s.delta, -2) }