% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pcm.R \name{pcm} \alias{pcm} \title{Compute Partial Credit Model (PCM) for polytomous and dichotomous items} \usage{ pcm( df = NULL, items = NULL, grp = NULL, dif.items = NULL, type.dif = NULL, verbose = T, fit = "ucminf", method.theta = "eap" ) } \arguments{ \item{df}{data.frame containing the data} \item{items}{vector containing the names of columns where item responses are stored in df} \item{grp}{string containing the name of the column where an optional group membership variable is stored in df} \item{dif.items}{vector containing the list of indexes in "items" corresponding to dif items} \item{type.dif}{vector containing DIF form for each item specified in dif.items. 1 is homogeneous DIF, 0 is heterogeneous DIF} \item{verbose}{set to TRUE to print a detailed output, FALSE otherwise} \item{fit}{string determining the optimization algorithm. Values "ucminf" or "nlminb" ar recommended} \item{method.theta}{string determining the estimation method for individual latent variable values. Either "eap", "mle" or "wle"} } \value{ A data.frame containing various model outputs } \description{ This function computes a frequentist PCM, potentially accounting for DIF on specified items }